References
- M. A. Ali, H. Budak, Z. Zhang, and H. Yildrim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Mathematical Methods in the Applied Sciences, https://doi.org/10.1002/mma.7048.
- M. A. Ali, H. Budak, M. Abbas, and Y.-M. Chu, Quantum Hermite.Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives, Adv Differ Equ 2021 (7) (2021). https://doi.org/10.1186/s13662- 020-03163-1.
- M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza and Yu-Ming Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv Differ Equ 2021, 64 (2021). https://doi.org/10.1186/s13662-021-03226-x.
- M. A. Ali, Y.-M. Chu, H. Budak, A. Akkurt, and H.Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv Differ Equ 2021, 25 (2021). https://doi.org/10.1186/s13662-020-03195-7.
- M. A. Ali, N. Alp, H. Budak, Y-M. Chu and Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Mathematics 2021, in press.
- M. A. Ali, H. Budak, A. Akkurt and Y-M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Mathematics 2021, in press.
- R. P. Agarwal, A propos d'une note de m. pierre humbert, CR Acad. Sci. Paris 236 (21) (1953), 2031-2032.
- W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proceedings of the Edinburgh Mathematical Society, 15 (2) (1966), 135-140. https://doi.org/10.1017/S0013091500011469
- M. Alomari, M. Darus, and S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, Research report collection, 12 (4) (2009).
- N. Alp, M. Z. Sarikaya, M. Kunt, and I. Iscan, q- Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University-Science 30 (2) (2018), 193-203. https://doi.org/10.1016/j.jksus.2016.09.007
- S. Bermudo, P. Korus and J. E. N. Valdes, On q-Hermite Hadamard inequalities for general convex functions, Acta Mathematica Hungarica, pages 1-11, 2020.
- B. B.-Mohsin, M. U. Awan, M. A. Noor, L. Riahi, K. I. Noor, and B. Almutairi, New quantum Hermite-Hadamard inequalities utilizing harmonic convexity of the functions, IEEE Access, 7:20479-20483, 2019. https://doi.org/10.1109/access.2019.2897680
- H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite Hadamard-like inequalities for coordinated convex functions, Journal of Optimization Theory and Applications, pages 1-12, 2020.
- H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Mathematical Methods in the Applied Sciences, 2020.
- Y. Deng, M. U. Awan, and S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics 7 (8) (2019), 751. https://doi.org/10.3390/math7080751
- S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson's inequality and applications, RGMIA research report collection 2 (3) (1999).
- T.-S. Du, J.-G. Liao, and Y.-J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions J. Nonlinear Sci. Appl 9 (5) (2016), 3112-3126. https://doi.org/10.22436/jnsa.009.05.102
- T. Ernst, The history of q-calculus and a new method, Citeseer, Sweden, 2000.
- T. Ernst, A comprehensive treatment of q-calculus, Springer, Science and Business Media, 2012.
- H. Gauchman, Integral inequalities in q-calculus, Computers and Mathematics with Applications 47 (2-3) (2004), 281-300, 2004. https://doi.org/10.1016/S0898-1221(04)90025-9
- S. Iftikhar, P. Kumam, and S. Erden, Newton's-type integral inequalities via local fractional integrals, Fract 28 (3)(2020), 2050037.604.
- D. O. Jackson and T. Fukuda, O. Dunn, and E. Majors, On q-definite integrals, In Quart. J. Pure Appl. Math. Citeseer, 1910.
- S. Jhanthanam, J. Tariboon, S. K Ntouyas, and K. Nonlaopon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics 7 (7) (2019), 632. https://doi.org/10.3390/math7070632
- V. Kac and P. Cheung, Quantum calculus, Springer, Science and Business Media, 2001.
- M. A. Khan, N. Mohammad, E. R. Nwaeze, and Y.-M. Chu, Quantum Hermite.Hadamard inequality by means of a green function, Advances in Difference Equations 2020 (1) (2020), 1-20. https://doi.org/10.1186/s13662-019-2438-0
- W. Liu and H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, 2016.
- M. A. Noor, K. I. Noor, and S. Iftikhar, Some Newton.s type inequalities for harmonic convex functions, J. Adv. Math. Stud 9 (1) (2016), 7-16.
- M. A. Noor, M. U. Awan, and K. I. Noor, Quantum ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal 10 (4) (2016), 1013-1018. https://doi.org/10.7153/jmi-10-81
- M. A. Noor, K. I. Noor, and M. U. Awan, Some quantum estimates for Hermite- Hadamard inequalities, Applied Mathematics and Computation 251 :675.679, (2015). https://doi.org/10.1016/j.amc.2014.11.090
- M. A. Noor, K. I. Noor, and M. U. Awan, Some quantum integral inequalities via preinvex functions, Applied Mathematics and Computation, 269:242.251, 2015. https://doi.org/10.1016/j.amc.2015.07.078
- M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Mathematical Journal 40 (2) (2018), 239-250. https://doi.org/10.5831/HMJ.2018.40.2.239
- E. R. Nwaeze and A. M. Tameru, New parameterized quantum integral inequalities via eta-quasiconvexity Advances in Difference Equations 2019 (1) (2019), 425. https://doi.org/10.1186/s13662-019-2358-z
- M. Z. Sarikaya, E. Set, and M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Computers and Mathematics with Applications 60 (8) (2010), 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033
- J. Tariboon and S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Advances in Difference Equations 2013 (1) (2013), 282. https://doi.org/10.1186/1687-1847-2013-282
- M. Tunc, E. Gov, and S. Balgecti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes 19 (1) (2018), 649-664. https://doi.org/10.18514/mmn.2018.1661