• 제목/요약/키워드: Newton-raphson method

검색결과 500건 처리시간 0.012초

형상오차를 갖는 보올 베어링과 하우징의 끼워 맞춤에 따른 베어링 진동 및 수명의 영향 (Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors)

  • 이영근;이석훈;정일권;차철환;한효섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2005
  • Ball bearings which were fitted between housing and shaft play an important role in rotating shaft system smoothly, Therefore bearing's running accuracy has significant influence on that of rotating machinery. Manufacturing accuracy of bearings as well as that of shaft and housing is main factor to affect bearing running accuracy In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after being fitted into housing are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then these analysis was conducted utilizing the Newton-Raphson iterative method. The results show that vibration magnitude of ball bearing fitted into housing is considerably larger than before assembly, and bearing's theoretical L$_{10}$ fatigue life that ninety percent of the bearing population will endure decreased in about fifty percent.

  • PDF

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

ZI 및 ZA형 웜기어의 치합전달오차 해석 (Transmission Error Analysis of ZI and ZA Profile Worm Gears)

  • 이태훈;서준호;박노길
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.325-331
    • /
    • 2018
  • Automobiles and systems requiring high gear ratios and high power densities generally use worm gears. In particular, as worm gears have a small volume and self-locking function, home appliances such as refrigerators and washers consist of worm gears. We can classify worm gears into cylindrical worms and rectangular worms. According to the AGMA standard, there are four types of cylindrical worms, ZA, ZN, ZK and ZI, depending on the machining of the worm shaft. It is preferable to use a ZI-type worm shaft, which is a combination of a worm wheel having an involute helical tooth surface and a conjugate tooth surface. However, in many cases, industries mostly use ZK, ZN, and ZA worm shafts because of the ease of processing. This paper presents numerical approaches to produce ZI and ZA worm surfaces and worm wheel. For the analysis of the transmission error of a worm gear system, this study (1) generates surface profile functions of ZI profile worm gear and worm shaft based on the common rack theory, (2) adopts the Newton-Raphson method for the analysis of the gear surface contact condition, and (3) presents and compares the corresponding transmission errors of ZI and ZA worm gears.

Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory

  • Soleimani, Ahmad;Dastani, Kia;Hadi, Amin;Naei, Mohamad Hasan
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.517-534
    • /
    • 2019
  • In this paper, the effects of inevitable out-of-plane defects on the postbuckling behavior of single-layered graphene sheets (SLGSs) under in-plane loadings are investigated based on nonlocal first order shear deformation theory (FSDT) and von-Karman nonlinear model. A generic imperfection function, which takes the form of the products of hyperbolic and trigonometric functions, is employed to model out-of-plane defects as initial geometrical imperfections of SLGSs. Nonlinear equilibrium equations are derived from the principle of virtual work and variational formulation. The postbuckling equilibrium paths of imperfect graphene sheets (GSs) are presented by solving the governing equations via isogeometric analysis (IGA) and Newton-Raphson iterative method. Finally, the sensitivity of the postbuckling behavior of GS to shape, amplitude, extension on the surface, and location of initial imperfection is studied. Results showed that the small scale and initial imperfection effects on the postbuckling behavior of defective SLGS are important and cannot be ignored.

A Novel Algorithm of Joint Probability Data Association Based on Loss Function

  • Jiao, Hao;Liu, Yunxue;Yu, Hui;Li, Ke;Long, Feiyuan;Cui, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2339-2355
    • /
    • 2021
  • In this paper, a joint probabilistic data association algorithm based on loss function (LJPDA) is proposed so that the computation load and accuracy of the multi-target tracking algorithm can be guaranteed simultaneously. Firstly, data association is divided in to three cases based on the relationship among validation gates and the number of measurements in the overlapping area for validation gates. Also the contribution coefficient is employed for evaluating the contribution of a measurement to a target, and the loss function, which reflects the cost of the new proposed data association algorithm, is defined. Moreover, the equation set of optimal contribution coefficient is given by minimizing the loss function, and the optimal contribution coefficient can be attained by using the Newton-Raphson method. In this way, the weighted value of each target can be achieved, and the data association among measurements and tracks can be realized. Finally, we compare performances of LJPDA proposed and joint probabilistic data association (JPDA) algorithm via numerical simulations, and much attention is paid on real-time performance and estimation error. Theoretical analysis and experimental results reveal that the LJPDA algorithm proposed exhibits small estimation error and low computation complexity.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

사장교의 최적 초기형상 및 무응력길이 결정을 위한 간략해석법 (A Simplified Analysis Method for Determining an Optimized Initial Shape of Cable-Stayed Bridges)

  • 정명락;박세웅;민동주;김문영
    • 대한토목학회논문집
    • /
    • 제36권6호
    • /
    • pp.947-954
    • /
    • 2016
  • 고정하중을 받는 사장교의 최적 초기형상 결정을 위한 간략해석법을 제시한다. 이 방법은 비선형 유한요소 해석을 수행하지 않고 최적의 초기형상을 구현할 수 있으며, 최소의 휨모멘트를 발생시키는 무응력길이를 제공한다. 초기형상 해석 후 여타의 하중조합 또는 시공단계해석을 수행하기 위해 무응력길이를 변화시키지 않고 Newton-Raphson 반복법을 수행하는 무응력길이법을 이용한다. 수치예제는 제작캠버를 포함한 인천대교 2차원 모델이며, 제시된 해석법과 상용 유한요소해석 프로그램 MIDAS의 초기형상 해석결과를 비교 분석한다. 주로 케이블의 장력과 주부재의 휨모멘트 및 변위를 관찰하였으며, 두 해석결과는 축방향 변위를 제외하고 모든 결과 값이 서로 잘 일치함을 확인할 수 있었다.