• Title/Summary/Keyword: Newton-Raphson Iteration

Search Result 115, Processing Time 0.018 seconds

A Nonlinear Analysis of Two-Dimensional Beam Finite Elements (2차원(次元) 보 유한요소(有限要素) 비선형(非線型) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.53-61
    • /
    • 1984
  • A nonlinear formulation of a beam finite element(NB6) on the total Lagrangian mode for the geometrically nonlinear analysis of two-dimensional elastic framed structures is presented. The NB6 beam element has been degenerated from the three-dimensional continuum by introducing the deep beam assumptions and consists of three reference nodes and three relative nodes. The element characteristics are derived by discretizing the beam equations of motion using the Galerkin weighted residual method and are reduced-integrated repeatedly for each loading step by the Newton-Raphson iteration techpique. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed nonlinear NB6 beam element.

  • PDF

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements (등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析))

  • Lee, Nam Ho;Choi, Chang Koan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 1987
  • The paper describes the analysis of large displacement problems including instability phenomena. The element used in this is a degenerated isoparametric shell element with eight nodes. Total Lagrangian formulation has been adopted in this study using Newton-Raphson iteration method with incremental load. The linear stability analyses performed usually for the initial position can be repeated at several advanced fundamental states on the non-linear buckling path. Thus a current estimate of the failure load is given. The numerical examples of a cylindrical panel under uniform load, simply supported plate under axial load, and clamped plate under uniform load are carried out. The examples applying degenerated isoparametric elements to bifurcation buckling and nonlinear collapse problems are also performed.

  • PDF

A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads (조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구)

  • 한상을;이갑수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies (중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석)

  • 김만철;정형조;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.431-438
    • /
    • 1998
  • An efficient solution method is presented to solve the eigenvalue problem arising in tile dynamic analysis of non-proportionally damped structural systems with multiple or close eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the quadratic eigenvalue problem. Even if the shift value is an eigenvalue of the system, the proposed method guarantees nonsingularity, which is analytically proved. The initial values of the proposed method can be taken as the intermediate results of iteration methods or results of approximate methods. Two numerical examples are also presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.

Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects (기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5979-5986
    • /
    • 2013
  • This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.