• 제목/요약/키워드: Newton-Method

검색결과 1,017건 처리시간 0.03초

AESOPS 알고리즘의 고유치 반복계산식과 Newton Raphson법과의 비교연구 (A comparative study on the iterative eigenvalue calculation method in AESOPS algorithm and Newton Raphson Method)

  • 김덕영;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.259-262
    • /
    • 1998
  • This paper presents a new eigenvalue calculation methods in AESOPS algorithm. The source program of the AESOPS algorithm is modified to practice in PC environment. Window95 is used as an operating system of PC and MicroSoft Power Station is used to compile the fortran source program. The heuristically approximated eigenvalue calculation method of the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

A THIRD-ORDER VARIANT OF NEWTON-SECANT METHOD FINDING A MULTIPLE ZERO

  • Kim, Young Ik;Lee, Sang Deok
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.845-852
    • /
    • 2010
  • A nonlinear algebraic equation f(x) = 0 is considered to find a root with integer multiplicity $m{\geq}1$. A variant of Newton-secant method for a multiple root is proposed below: for n = 0, 1, $2{\cdots}$ $$x_{n+1}=x_n-\frac{f(x_n)^2}{f^{\prime}(x_n)\{f(x_n)-{\lambda}f(x_n-\frac{f(x_n)}{f^{\prime}(x_n)})\}$$, $$\lambda=\{_{1,\;if\;m=1.}^{(\frac{m}{m-1})^{m-1},\;if\;m{\geq}2$$ It is shown that the method has third-order convergence and its asymptotic error constant is expressed in terms of m. Numerical examples successfully verified the proposed scheme with high-precision Mathematica programming.

6자유도 매니퓰레이터 역기구학 해를 구하기 위한 새로운 방법 (A new method for solving the inverse kinematics for 6 D.O.F. manipulator)

  • 정용욱;류재춘;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.557-562
    • /
    • 1991
  • In this paper, we present new methods for solving the inverse kinematics associated with 6 degree of freedoms manipulator by the numerical method. This method will be based on tracking stability of special nonlinear dynamical systems, and differs from the typical techniques based by the Newton-Gauss or Newton-Raphson method for solving nonlinear equations. This simulation results show that the new method is solving the inverse kinematics of PUMA 560 without the derivative of a given task space trajectories.

  • PDF

CONVERGENCE OF THE NONMONOTONE PERRY-SHANNO METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Ou, Yigui;Ma, Wei
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.971-980
    • /
    • 2012
  • In this paper, a method associating with one new form of nonmonotone linesearch technique is proposed, which can be regarded as a generalization of the Perry-Shanno memoryless quasi-Newton type method. Under some reasonable conditions, the global convergence of the proposed method is proven. Numerical tests show its efficiency.

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

전력조류계산의 개선에 관한 연구 (An Improved Fast Decoupled Newton Raphson Load flow Study)

  • 박영문;백영식
    • 전기의세계
    • /
    • 제26권2호
    • /
    • pp.78-83
    • /
    • 1977
  • The Newton-Raphson method has now gained widespread popularity in Load-flow calculationes. In this paper programming is developed with aims to improve the convergence characteristics, speed and memory requirements in the above method. The method of Load-flow calculations is performed by employing the MW-O/MVAR-V decoupling principle. To reduce the memory requirements and improve the speed of calculation the programming of the Optimally Ordered Triangular Factorization method is developed. Besides this, other measures are taken to reduce memory requirements and computing time and to improve reliability. KECO'S 48 Bus system was tested and the method suggested in this paper was proved to be faster than any other methods.

  • PDF

QUADRATIC B-SPLINE FINITE ELEMENT METHOD FOR THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Yin, Yong-Xue;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • 제29권5호
    • /
    • pp.503-510
    • /
    • 2013
  • A quadratic B-spline finite element method for the spatial variable combined with a Newton method for the time variable is proposed to approximate a solution of Benjamin-Bona-Mahony-Burgers (BBMB) equation. Two examples were considered to show the efficiency of the proposed scheme. The numerical solutions obtained for various viscosity were compared with the exact solutions. The numerical results show that the scheme is efficient and feasible.

A FIFTH-ORDER IMPROVEMENT OF THE EULER-CHEBYSHEV METHOD FOR SOLVING NON-LINEAR EQUATIONS

  • Kim, Weonbae;Chun, Changbum;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.437-447
    • /
    • 2011
  • In this paper we present a new variant of the Euler-Chebyshev method for solving nonlinear equations. Analysis of convergence is given to show that the presented methods are at least fifth-order convergent. Several numerical examples are given to illustrate that newly presented methods can be competitive to other known fifth-order methods and the Newton method in the efficiency and performance.

SEMILOCAL CONVERGENCE THEOREMS FOR A CERTAIN CLASS OF ITERATIVE PROCEDURES

  • Ioannis K. Argyros
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.29-40
    • /
    • 2000
  • We provide semilocal convergence theorems for Newton-like methods in Banach space using outer and generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Frechet-derivative. This way our Newton-Kantorovich hypotheses differ from earlier ones. Our results can be used to solve undetermined systems, nonlinear least square problems and ill-posed nonlinear operator equations.

A NEW LIMITED MEMORY QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Moghrabi, Issam A.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권1호
    • /
    • pp.7-14
    • /
    • 2003
  • The main concern of this paper is to develop a new class of quasi-newton methods. These methods are intended for use whenever memory space is a major concern and, hence, they are usually referred to as limited memory methods. The methods developed in this work are sensitive to the choice of the memory parameter ${\eta}$ that defines the amount of past information stored within the Hessian (or its inverse) approximation, at each iteration. The results of the numerical experiments made, compared to different choices of these parameters, indicate that these methods improve the performance of limited memory quasi-Newton methods.

  • PDF