• 제목/요약/키워드: Newton-Euler

검색결과 59건 처리시간 0.02초

First Principle Approach to Modeling of Primitive Quad Rotor

  • Sudiyanto, Tata;Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.148-160
    • /
    • 2009
  • By the development of recent technology, a new variant of rotorcrafts having four rotors start drawing attention from aerial-robotics engineers more than before. Its potential spans from just being control device test bed to performing difficult task such as carrying surveillance device to unreachable places. In this regards, modeling a quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor aerial vehicle. A first principle approach is considered for deriving the model based on Euler-Newton equations of motion. The result of the modeling is a simulation platform that is expected to acceptably predict the dynamic behavior of the quad-rotor in various flight conditions. Linear models associated with different flight condition can be extracted for the purpose of control synthesis.

동력학 모델을 이용한 인체 동작 제어 (Human Motion Control Using Dynamic Model)

  • 김창회;오병주;김승호
    • 대한인간공학회지
    • /
    • 제18권3호
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

순환 다물체동역학에서의 비순환적인 동하중해석 공식 (A Non-recursive Formulation of Dynamic Force Analysis in Recursive Multibody Dynamics)

  • 김성수
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.809-818
    • /
    • 1997
  • An efficient non-recursive formulation of dynamic force analysis has been developed for serially connected multibody systems. Although derivation of equations of motion is based on a recursive dynamic formulation with joint relative coordinates, in the proposed formulation, dynamic forces such as joint reaction forces and driving force are computed non-recursively for specified joints. The efficiency of the proposed formulation has been proved by the operational count and the CPU time measure, comparing with that of the conventional recursive Newton-Euler formulation. A simulation of 7-DOF RRC robot arm has been carried out to validate solutions of reaction forces by comparing with those from a commercial dynamic analysis program DADS.

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

구동방식에 따른 브러시리스 직류 전동기의 기전 연성 특성 해석 (Electro-mechanical field analysis of Brushless DC motor due to the driving methods)

  • 장정환;장건희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.659-662
    • /
    • 2003
  • This paper analyzes the electro-mechanical characteristics of the spindle motor in a computer hard disk drive due to the trapezoidal and sinusoidal driving methods. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation for the analysis of the magnetic field. Mechanical motion of a rotor is calculated by solving Newton-Euler equation. Electro-mechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force.

  • PDF

전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어 (A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.

동력학기반 인체 모델 연구 (A Study of Human Model Based on Dynamics)

  • 김창희;김승호;오병주
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.485-493
    • /
    • 1999
  • Human can generate various posture and motion with nearly 350 muscle pairs. From the viewpoint of mechanisms, the human skeleton mechanism represents great kinematic and dynamical complexity. Physical and behavioral fidelity of human motion requires dynamically accurate modeling and controling. This paper describes a mathematical modeling, and dynamic simulation of human body. The human dynamic model is simplified as a rigid body consisting of 18 actuated degrees of freedom for the real time computation. Complex kinematic chain of human body is partitioned as 6 serial kinematic chains that is, left arm, right arm, support leg, free leg, body, and head. Modeling is developed based on Newton-Euler formulation. The validity of proposed dynamic model, which represents mathematically high order differential equation, is verified through the dynamic simulation.

  • PDF

유한요소법을 이용한 유도전동기의 기동특성 해석 (Transient Analysis of Induction Motors using Finite Element Method)

  • 김영선;이복용;이향범;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.306-308
    • /
    • 1997
  • In this paper, We present the transient analysis method of induction motor by TDFE(Time Domain Finite Element) method. For simulation of transient performance, Maxwell's equations are solved using 2-Dimensional TDFE method, and the circuit equations from the stator and rotor are solved simultaneously. The time derivatives are discretized with Euler scheme and the Newton-Raphson iteration method is applied to a large system of equations which are representing the whole magnetic and feeding circuit equations because of the magnetic nonlinearity of the stator and rotor core. The presented method is applied to three phase induction motor. And we obtained the phase currents, torque and rotor position until the steady state.

  • PDF

미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어 (Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters)

  • 이근욱;박진배;최윤호
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

컴퓨터 하드 디스크 드라이브용 스핀들 모터의 기전 연성계 해석 (Analysis of Electromechanical - Coupled Field of the Spindle Motor in Computer Hard Disk Drives)

  • 장정환;장건희
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권11호
    • /
    • pp.742-748
    • /
    • 2000
  • This paper presents a numerical method to analyze the electromechanical-coupled field in the spindle motor of a computer hard drive and investigates dynamic response due to the electromechanical excitation, i.e. unbalanced magnetic force and centrifugal force for the rotational asymmetric motor. Magnetic field is calculated from Maxwells equation and voltage equation by introducing nonlinear time-dependent finite element analysis. Mechanical motion of rotor is calculated by solving Newton-Euler equation. Electromechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force and resulting vibration of a rotor. It shows that centrifugal force produces the unbalanced magnetic force even in the rotational symmetric motor. It also shows that resonance produces quite considerable vibration even when the high excitation frequency with small amplitude matches with the natural frequency of the spindle motor.

  • PDF