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Abstract 

By the development of recent technology, a new variant of rotorcrafts having 
four rotors start drawing attention from aerial-robotics engineers more than before. 
Its potential spans from just being control device test bed to performing difficult task 
such as carrying surveillance device to unreachable places. In this regards, modeling a 
quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control 
system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor 
aerial vehicle. A first principle approach is considered for deriving the model based on 
Euler-Newton equations of motion. The result of the modeling is a simulation platform 
that is expected to acceptably predict the dynamic behavior of the quad-rotor in 
various flight conditions. Linear models associated with different flight condition can be 
extracted for the purpose of control synthesis.   
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Introduction 

Quad-rotor rotorcrafts, or quadrotor, have some advantages over conventional 

helicopters. Having the front and rear rotor rotates in the opposite direction than the other 

two, gyroscopic effects, aerodynamic torques and off-axis moments from asymmetric lift 

distribution on each rotor disk tend to cancel in trimmed flight. Quadrotors gain its flight 

control by regulating total thrust output and total torque output of its four rotors sufficiently. 
The first principle modeling approach is performed the quadrotor vehicle based on 

previous experience in developing dynamics model of a small scale helicopter[1], [2].  Other 
modeling approaches to rotorcraft-based unmanned aerial vehicles (RUAVs) exist in the 
literature including the use of system identification[3], neural-networks [4] and linear 
parameter varying (LPV) identification[5]. The survey for the advances of modeling of 
RUAVs was reported in [6]. 

To construct the dynamic model of a quadrotor, we begin with the formulations needed 

to express all forces and moments that the quadrotor’s components may generate during 

flight. Then, taking the quadrotor as a rigid body, we derive its equations of motion. 

Linearized model is constructed by first calculating solutions of some important stationary 

points followed by formulating its linear response to small perturbations. 
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Rotor Theory 

The equations governing rotor thrust 
and torque are derived from the momentum 
theory and the blade element theory. 
Momentum theory provides insight into 
condition of a thrust generating rotor as it 
accelerates (or decelerates) some amount 
of air mass in the process. On the other 
hand, the blade element theory explains the 
mechanism of which thrust and torque are 
generated from each rotor blade. 

2. 1 Momentum Method 
For steady flow along the flow field, the 

mass flow is constant at any point of observation. 

0 0 1 1 2 2
dm A w A w A w
dt

ρ ρ ρ= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅      (1) 

( )
( )

2 2
1 Root

2 2
01

A R r

R r

π

π

= ⋅ −

= ⋅ ⋅ −
                   (2) 

rr
R

≡                           (3) 

The total thrust exerted by each 
accelerating air particle in the control volume is 
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At station-1, the velocity of the 
airflow has increased from w0 to w1 by an 
amount of velocity induced by the rotor, wind. 

1 0 indw w w= +                    (5) 

 
Fig. 1. Induced velocity in the vicinity of a 

thrust-generating rotor 

The relation between flow velocities 
at station-1 and station-2 can be evaluated 
from the ideal energy rate conservation 
principle, and it gives 

2 ind 02w w w= −                 (6) 

Substituting (5) and into (4), 

( ) ( )2 2 2 2
0 ind 02 1T R r w wρ π= ⋅ ⋅ ⋅ − ⋅ −      (7) 

2.2 Blade Element Method 
A blade element is one small 

portion of the blade at a distance, r, from 
the center of rotor rotation, with a span-
wise dimension dr (Figure 2). 

Lift element and drag element on 
blade element is calculated by 

2
in b

1
2 LdL V C c R drρ= ⋅ ⋅ ⋅ ⋅ ⋅         (8) 

2
in b

1
2 DdD V C c R drρ= ⋅ ⋅ ⋅ ⋅ ⋅           (9) 

Vin is in-plane component of blade 
element ’ s local airspeed, which are 
composed of that due to rotor rotation 
speed and in-plane component of rotor 
airspeed as the whole body of the 
rotorcraft moves translationally. 
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The lift coefficient is a linear 
function of the blade element ’ s local 
angle of attack with a slope determined by 
blade’s cross-section airfoil. Taking the 
blade’s airfoil to be homogenous, the lift 
slope is a constant function along its span. 

 

Fig. 2. Geometry of a blade element 
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The drag coefficient is not a linear 
function w.r.t. blade element ’ s local 
angle of attack. A numerical approach 
would be more adequate to obtain more 
accurate result. For now, we take it being 
constant w.r.t. angle of attack. 
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α

∂ ≡
∂                    

(13) 

The blade element’s local angle of 
attack is determined either by the blade 
element’s pitch angle and the direction of 
the blade element ’ s local relative 
airspeed (Figure 3). 

 α θ φ= −                     (14) 

For twisted blades, the blade 
element’s pitch angle is a function of 
blade element’s location along blade’s 
span. (15) and (16) respectively are 
expression of blade element’s pitch with 
constant and quadratic twist. 
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The inflow angle is determined by the 
ratio between normal and tangential component 
of blade element’s airspeed (Figure 3). 
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Fig. 3. Blade element environment 
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Rotor thrust is calculated by first 
integrating the elemental lift along rotor blade 
span followed by calculating mean value of 
blade’s lift around rotor disc azimuth, then 
multiplying it by number of blades. 
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The same goes for rotor torque as well. 
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The Nonlinear Model 

From Newton ’ s 2nd Law for 
translational motion, considering constant 
vehicle mass, 

B
B B I B

I
m m

t
∂⎛ ⎞+ ⋅ ⋅ = ⋅ + ×⎜ ⎟∂⎝ ⎠

∑ vF C g ω v   (21) 

B
I

c c c s s
s s c c s s s s c c s c
c s c s s c s s s c c c

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

⋅ ⋅ −⎡ ⎤
⎢ ⎥= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦

C
 

Or, in triad formulation, 
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And for angular motion, 
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Combining (22) and (24), and the triad kinematic 
relation, the nonlinear model is obtained. 
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Each of these nine expression shows 
the rate of time of quadrotor ’ s motion 
variable states of interest, which are the triad 
body velocity (uB, vB, wB), the triad body 
angular rate (p, q, r), and the triad body 
attitude (φ, θ, ψ). These states’ rates of time 
are functions of its current states and driving 
inputs, which are the total forces and total 
moments. The total forces and moments come 
from quadrotor ’ s propulsion system and 
aerodynamic forces acting on quadrotor’s 
fuselage. In the next following subsection, the 
discussion will be about components of forces 
and moments. 

3.1 Components’ Forces and Moments 

3.2 The Four Rotors 
The four rotors are the primary 

components of a quadrotor. Not only it 
inherits the name from them, but they are the  

 

Fig. 4. Quadrotor’s geometry 

Table 1. Qualitative control for maneuvering 

quadrotor 

Rotor Speed Increment w.r.t. Trim 

Setting 
Response\Input 

Roto

r #1

Roto

r #2

Roto

r #3 

Roto

r #4 

Vertical 

Climb/ 

Descend

+ / 

- 

+ / 

- 

+ / 

- 

+ / 

- 

Pitch 

Up/Down
+ / 

- 
0 

- / 

+ 
0 

Longitudinal

-Vertical 

Move 

Forward/

Rearward

Coordinated Maneuver between 

Pitch Down/Up and Vertical Climb 

Yaw 

Right/Left
+ / 

- 

- / 

+ 

+ / 

- 

- / 

+ 

Roll 

Right/Left
0 

- / 

+ 
0 

+ / 

- 
Lateral-

Directional 
Move 

Sideward

Right/Left

Coordinated Maneuver between 

Roll Right/Left and Vertical Climb 

very instrument for it to fly and to maneuver. 
The generated thrusts provide mean to lift off 
the ground, and maneuverability is achieved by 
regulating thrust and torque output of each 
rotor to produce thrust difference and torque 
difference among them (Table 1). In typical 
quadrotor, the four rotors do not have hinges to 
allow their blades to flap. Therefore, in the 
following discussion, the direction of thrust 
vector is considered to be always aligned with 
the corresponding rotor axis. Moreover, the 
four rotors are considered as identical in specs. 

3.2.1 Rotor Forces 

Rotor force is calculated by solving 
rotor force equations expressed by momentum 
method (7) and blade element method (19). 
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3.2.2 Rotor Moments 

Each rotor generates moments about 
vehicle’s center of gravity: due to its torque, 
due to product of its thrust vector with 
distance from vehicle’s center of gravity, and 
due to asymmetric distribution of lift on each 
rotor disc, which is considered insignificant for 
the quadrotor flight regime. 
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3.3 The Fuselage 
The fuselage is part of quadrotor’s 

body which makes the most volume of the 
body and contains most of the payload. The 
fuselage is subject to drag forces due to 
rotors’ induced wind, air resistance as it 
moves, and environment’s wind disturbance. 

3.3.1 Fuselage Force 

Fuselage force is calculated as a 
product of local dynamic pressure with 
corresponding fuselage effective wet area. 
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3.3.2 Fuselage Moment 

Moment due to fuselage force may 
arise when fuselage aerodynamic center and 
vehicle body ’ s center of gravity don ’ t 
coincide. In this work however, it is 
considered both of them coincide at the same 
point. Therefore, the fuselage generates no 
moment about vehicle’s center of gravity. 
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Solution of Force and Moment 

Equilibria-Stationary Condition 

Stationary flight is flight condition in 
which net force and net moment acting on 
vehicle’s body are zero. Therefore, stationary 
flight implies that motion accelerations, 
translational and angular, are zero. 

Bs Bs Bs

s s s

0, 0, 0
0, 0, 0

u v w
p q r

= = =
= = =

& & &

& & &     

(44) 

On stationary condition, the solution for 
every variable is called trim value since the 
vehicle is considered as if it is trimmed in that 
condition, regardless of how it may happen. 

The Linearized Model 

5.1 The Linearized Equation of Motion 
Model linearization can be done at 

any point in vehicle’s flight envelope;  
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one linearized model for each point as 
many as needed. At that point of interest, 
the dynamics of the vehicle is considered 
stationary. The motion of the vehicle is 
then formulated as perturbation about a 
settled point, the stationary point. The 
total values of all motion variables are 
then expanded into Taylor series. 
Linearization takes place when the 
perturbation is so small that the 2nd order 
and higher term of the expansion becomes 
relatively insignificant with respect to the 
stationary value, leaving only the constant 
(stationary value) and the linear term in 
the expansion. 

From (25) to (30), 
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Applying the linear expansion to (33), and 
cropping the non-stationary term of them, 
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(47), (48), (49), (50),( 51), (52), (53), 

(54), and (55) can be expressed as 
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{ }
{ }

T

T
R1 R2 R3 R4

du dv dw dp dq dr d d d
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A is called characteristic matrix 

since it contains relations between states 

(x), and B is called input matrix since it 

contains relations between state (x) and 

driving input (u). 

5.2 Force and Moment Derivatives 

As it is shown in Table 2 and Table 

3, quantities in characteristic and input 

matrices consist of forces and moments 

derivatives. The following sections will 

express those derivatives. 

5.2.1 Derivative of Fx 

5.2.1.1 The Four Rotors 

For all rotors, 
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5.2.1.2 The Fuselage 
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Table 3. Elements of Input Matrix 
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A is called characteristic matrix 
since it contains relations between states 
(x), and B is called input matrix since it 
contains relations between state (x) and 
driving input (u). 

5.2 Force and Moment Derivatives 

As it is shown in Table 2 and Table 
3, quantities in characteristic and input 
matrices consist of forces and moments 
derivatives. The following sections will 
express those derivatives. 

5.2.1 Derivative of Fx 
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5.2.2 Derivative of Fy 

5.2.2.1 The Four Rotors 

( )
( ) R3 R4

0

, , , , , ,

yF

u v w p

∂
=

∂ •

• = Ω ΩK

      (63) 

5.2.2.2 The Fuselage 

( )Fus
eff B w

y
y

F
S v v

v
ρ

∂
= − ⋅ ⋅ +

∂
    (64) 

( )
( )
( )

Fus

R3 R4

0

, , , , ,

yF

u w p
v

∂
=

∂ •

• = Ω Ω
• ≠

K

      (65) 

5.2.3 Derivative of Fz 

5.2.3.1 The Four Rotors 

( ) ( )2 2 2R# 0
0 04 1 zT R R r

w w R
λ µρ π λ∂ ∂⎛ ⎞= ⋅ Ω⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ −⎜ ⎟∂ ∂ Ω⋅⎝ ⎠

(66) 

( ) ( ) ( ) ( )
( )
( )

2 2 2R# 0
0 0

R3 R4

4 1

, , , , ,

T R R r

u v p
w

λρ π λ∂ ∂= ⋅ Ω⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
∂ • ∂ •

• = Ω Ω
• ≠

K

   (67) 

( ) ( )

( ) ( )

4 2 2 2R Ri
0 R 0

R R

2 0Ri
R 0

R R

4 2 2 2
0 R 0

4 1

4 1

i
j z

j j

z
j z

j j

j z

T R r

R r

ρ π λ µ

λ µλ µ

ρ π λ µ

∂ ∂Ω= ⋅ ⋅ ⋅ − ⋅ Ω ⋅ − ⋅
∂Ω ∂Ω

⎛ ⎞∂ ∂Ω ⋅ ⋅ − ⋅⎜ ⎟⎜ ⎟∂Ω ∂Ω⎝ ⎠

⋅ ⋅ ⋅ − ⋅ Ω ⋅ −⎧
⎪
⎪⎪=

⎛
⎜⎜
⎝

⎞
+ ⎟

⎪
⎪

⎟
⎠

⎨
⎪

⎩

0Ri
R 0

R

,

0,

j
j

i jλλ ∂Ω ⋅ ⋅ =
∂Ω

⎛
⎜
⎝

⎞
+ ⎟⎟

⎠

i j≠ (68) 

5.2.3.2 The Fuselage 
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5.2.4 Derivative of Mx 
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5.2.5 Derivative of My 
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5.2.6 Derivative of Mz 
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5.2.6.2 The Fuselage 
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Results and Conclusions 

Trim solutions of several flight conditions 
are tabulated in Table 5. Variations of characteristic 
roots are plotted with respect to corresponding 
forward speed variation in Fig. 5 to Fig. 13 
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Fig. 5. 1st eigen value and the corresponding 

eigen vector 
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Fig. 6. 2nd eigen value and the corresponding 

eigen vector 
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Fig. 7. 3rd eigen value and the corresponding 

eigen vector    
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eigen vector 
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Table 4. Quadrotor’s basic parameters 

Parameter 

Symbol Unit 
Value Description 

Overall body 

Ixx kg∙m
2
/s 0.0125 Quadrotor’s principal moment of inertia about xB-axis 

Iyy kg∙m
2
/s 0.0125 Quadrotor’s principal moment of inertia about yB-axis 

Izz kg∙m
2
/s 0.0287 Quadrotor’s principal moment of inertia about zB-axis 

m kg 1.02 Quadrotor’s mass 

Individual Rotor 

aR 1/rad 5.0 Rotor blades’ lift coefficient gradient 

bR 1 3 Number of rotor blades 

cR m 0.029 Rotor blades’ chord length 

lR m 0.200 Horizontal distance of rotor axis from vehicle center of gravity 

RR m 0.1300 Rotor blades’ span, rotor radius 

θTip R rad 0.0873 Rotor blades’ pitch angle at tip 

Fuselage 

Seff x m
2 

0.0168 Fuselage’s effective wet area normal to xB-axis 

Seff x m
2 

0.0168 Fuselage’s effective wet area normal to yB-axis 

Seff x m
2 

0.0235 Fuselage’s effective wet area normal to zB-axis 

Environment parameters 

ρ kg/m
3
 1.225 Ambient air density 

g m/s
2
 9.80665 Gravitational constant 

Table 5. Trim solutions of several flight conditions 

 v = 0 v = 5 v = 10 v = 15 

u = 
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0 0
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s s
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Fig. 9. 5th eigen value and the corresponding      Fig. 10. 6th eigen value and the corresponding  

ponding eigen vector                                    eigen vector 
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Fig. 11. 7th eigen value and the corresponding 

eigen vector 
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Fig. 12. 8th eigen value and the corresponding  

eigen vector                                    
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Fig. 13. 9th eigen value and the corresponding 

eigen vector 

It has shown that a quadrotor has 
symmetricity on xB-axis and yB-axis, 
which is one axis more than a 
conventional helicopter does. This gives 
the advantage of a quadrotor to change 
direction in level flight without having to 
change its heading. The downside shown 
in Table 5 is that to achieve higher cruise 
velocity, the quadrotor has to increase its 
corresponding attitude with respect to the 
level line, which in practical sense, less 
favorable. 

From stability analysis, the quadrotor 
generally shows unstable characteristics. A 

control strategy will have to deal with 
almost all of the plant ’ s characteristic 
roots and get them to the stable zone. The 
first root becomes fully unstable as 
quadrotor gain cruise speed. The second 
root shows quite the opposite, which is 
naturally unstable when the quadrotor 
hovers. Two unstable roots appear as a 
double and they get more unstable as the 
quadrotor’s speed gets higher. The other 
five roots have indifferent value and 
invariant with respect to the quadrotor’s 
cruise speed. The discontinuities shown by 
the variations of 1st, 2nd, 4th, 5th, 6th, and 7th 
roots suggest the quadrotor has distinctive 
characteristics between hover and cruise 
flight that a single control strategy may not 
be sufficient to cope with. Considering only 
cruise flight, only one of the 4 non-
indifferent roots shows stability increase as 
the quadrotor’s cruise speed increases, 
while the other three roots show increment 
in instability.  

Overall, the intent of the study is 
analytical model development of quadrotor 
vehicle. The developed model should be 
ultimately verified against the flight data 
throughout the applicable range of velocities 
in the flight envelope. The tests to gather 
such data is currently underway.  
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