• 제목/요약/키워드: Newton method

검색결과 1,012건 처리시간 0.022초

Hysteretic model for stud connection in composite structures

  • Xi Qin;Guotao Yang
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.587-599
    • /
    • 2023
  • The establishment of a hysteretic model which can accurately predict the hysteretic characteristics of the stud connection is of utmost importance for the seismic assessment of composite structures. In this paper, the Bouc-Wen-Baber-Noori(BWBN) model was adopted to describe the typical hysteretic characteristics of stud connections. Meanwhile, the Newton-Raphson iterative procedure and the Backward Euler method were used to determine the restoring force, and the Genetic Algorithm was employed to identify the parameters of the BWBN model based on the experimental data consisting of eight specimens. The accuracy of the identified parameters was demonstrated by comparison with the experimental data. Finally, prediction equations for the BWBN model parameters were developed in terms of the physical parameters of stud connections, which provides an approach to get the hysteretic response of stud connections conveniently.

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘 (Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication)

  • 윤태현
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.329-337
    • /
    • 2024
  • Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

MRAC 기법을 이용한 무인 컨테이너 운송차량의 조향 제어 (Steering Control of Unmaned Container Transporter Using MRAC)

  • 이영진;허남;최재영;이권순;이만형
    • 한국항만학회지
    • /
    • 제14권3호
    • /
    • pp.291-301
    • /
    • 2000
  • T his paper presents the lateral and longitudinal control algorithm for the driving of a 4WS AGV(Automated Guided Vehicle). The control law to the lateral and longitudinal control of the AGV includes adaptive agin tuning ability, that is the controller gain of the gravity compensated PD controller can be changed on a real-time. The gain tuning law is derived from the Lyapunov direct method using the output error of the reference model and the actual model, And to show the performance of the presented lateral and longitudinal control algorithm, we simulate toe nonlinear AGV equations of the motion by deriving the Newton-Euler Method, The read path is from quay yard area to docking position in loading yard area. The quay yard area is where the quay crane loads the container to the AGV and the docking position is where the container is transferred to the gantry crane. The road types are constructed in a straight line and J-turn. When driving the straight line, the driving velocity is 6㎧ and the J-turn is 3㎧.

  • PDF

형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사 (Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques)

  • 정준호;양동렬
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

유한요소법을 이용한 SRM의 특성해석 (Analysis of Switched Reluctance Motors Characteristics using FEM)

  • 이준호;이향범;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.139-141
    • /
    • 1996
  • The switched reluctance motors(SRM) are simple and robust in structure. Because the wide range of power and speed, their application field is increasing. In order to design the motors and to evaluate the performance of them properly, an accurate study about the analysis of motor characteristics is required. In this paper, for the analysis of SRM characteristics, the finite element method which is based on the solution of combined equations both the electromagnetic field equations and the circuit equations of stator is adopted. The analysis model is to he assumed two-dimensional and the nonlinear property of magnetic materials is considered by Newton-Raphson method. To verify the usefulness of the proposed algorithm, commercial SRM is chosen and simulated. The computed torques obtained by Maxwell Stress Tensor are compared with the experimental data and it is found that they are in good agreement. By applying the proposed algorithm to two cases, currents of stator and torques at every angular positions of rotor are obtained step by step. Comparing them, one can recognize that torque ripple of SRM can he improved by controlling the switching sequences of driving circuits.

  • PDF

Analysis of the Esterification Process for Poly(ethylene terephthalate)

  • Ahn, Young-Cheol;Park, Soo-Myung
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.399-409
    • /
    • 2003
  • The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.

전기 임피던스 단층촬영법에서 SPSA를 이용한 영상복원 (SPSA Approach to Image Reconstruction in Electrical Impedance Tomograhpy)

  • 김호찬;부창진;이윤준
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.23-28
    • /
    • 2004
  • 전기 임피던스 단층촬영법(electrical impedance tomography, EIT)은 미지의 내부 저항률 분포를 갖는 물체 주위에 특수하게 제작된 전극을 여러 개 배치하고 적절하게 설계된 전류를 주입하여 이에 따른 인가전압을 물체 경계에서 측정한 후 이를 근거로 EIT의 영상복원 알고리즘에서 물체 내부의 미지의 저항률 분포를 재구성하는 기술이다. 전기 임피던스 단층촬영법의 영상복원 과정은 비선형 방정식으로 기술되며, 그 해석적인 해를 구하기가 매우 어려우므로 수치적인 방법으로 근사해를 구한다. 본 논문에서는 EIT 영상복원 방법으로 동시 인자변환 확률적 근사화(simultaneous perturbation stochastic approximation, SPSA) 방법을 제안한다. SPSA 방법을 이용한 EIT 영상복원의 성능을 컴퓨터시뮬레이션을 통해 살펴보고 기존의 mNR 방법에 의해 얻어진 결과와 비교 분석하도록 한다.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.