• 제목/요약/키워드: New formulation

검색결과 1,079건 처리시간 0.03초

Vibration analysis of high nonlinear oscillators using accurate approximate methods

  • Pakar, I.;Bayat, M.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.137-151
    • /
    • 2013
  • In this paper, two new methods called Improved Amplitude-Frequency Formulation (IAFF) and Energy Balance Method (EBM) are applied to solve high nonlinear oscillators. Two cases are given to illustrate the effectiveness and the convenience of these methods. The results of Improved Amplitude-Frequency Formulation are compared with those of EBM. The comparison of the results obtained using these methods reveal that IAFF and EBM are very accurate and can therefore be found widely applicable in engineering and other science. Finally, to demonstrate the validity of the proposed methods, the response of the oscillators, which were obtained from analytical solutions, have been shown graphically and compared with each other.

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

압전 감지기/작동기를 포함하는 쉘 요소의 개발 (Development of Shell Element to Analyze an Intelligent Structure with Piezoelectric Sensor/Actuator)

  • 황우석;오진택;박현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.225-228
    • /
    • 2001
  • A new three-dimensional thin shell element for the structure containing an integrated distributed piezoelectric sensor and actuator is proposed. A finite element formulation for the static response of the shell with piezoelectric sensor/actuator is derived. The assumed strain formulation and the bubble function improves the performance of the shell element. The verification through the calculation of the static response for the piezoelectic bimorph beam shows that the results agree with those from the theoretical analysis very well.

  • PDF

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

DEA에서 교차효율성의 공격적 정형화 (An Aggressive Formulation of Cross-efficiency in DEA)

  • 임성묵
    • 한국경영과학회지
    • /
    • 제33권4호
    • /
    • pp.83-100
    • /
    • 2008
  • We propose a new aggressive formulation of cross-efficiency in Data Envelopment Analysis(DEA). In the traditional aggressive formulation, the efficiency score of a test DMU is maximized as the first goal while an average of efficiency scores of peer DMUs is minimized as the second goal. The proposed model replaces the second goal with the minimization of the best efficiency score of peer DMUs. We showed the model is a quasi-convex optimization problem, and for a solution method we developed a bisection method whose computational complexity is polynomial-time. We tested the model on 200 randomly generated DEA problems, and compared it with the traditional model in terms of various criteria. The experimental results confirmed the effectiveness and usefulness of the proposed model.

무요소법과 경계요소법의 변분적 조합 (A variationally coupled Element-Free Galerkin Method(EFGM) -Boundary Element Method(BEM))

  • 이상호;김명원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 2001
  • In this paper, a new algorithm of coupling Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the variational formulation is presented. A global variational coupling formulation of EFGM-BEM is achieved by combining the variational form on each subregion. In the formulation, Lagrange multiplier method is introduced to satisfy the compatibility conditions between EFGM subregion and BEM subregion. Some numerical examples are studied to verify accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM direct coupling method, EFGM and BEM. The proposed method incorporating the merits of EFGM and BEM is expected to be applied to special engineering problems such as the crack propogation problems in very large domain, and underground structures with joints.

  • PDF

여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석 (Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy)

  • 장평훈;박기철;김승호
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석 (3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept)

  • 박민철;김동훈;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

Correction of node mapping distortions using universal serendipity elements in dynamical problems

  • Kucukarslan, Semih;Demir, Ali
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.245-256
    • /
    • 2011
  • In this paper, the use of universal serendipity elements (USE) to eliminate node mapping distortions for dynamic problem is presented. Rectangular shaped elements for USE are being introduced by using a flexible master element with an adjustable edge node location. The shape functions of the universal serendipity formulation are used to derive the mass and damping matrices for the dynamic analyses. These matrices eliminate the node mapping distortion errors that occurs incase of the standard shape function formulations. The verification of new formulation will be tested and the errors encountered in the standard formulation will be studied for a dynamically loaded deep cantilever.