• Title/Summary/Keyword: New drug development process

Search Result 76, Processing Time 0.038 seconds

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

An Index Structure for Substructure Searching In Chemical Databases (화학 데이타베이스에서 부분구조 검색을 위한 인덱스 구조)

  • Lee Hwangu;Cha Jaehyuk
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.641-649
    • /
    • 2004
  • The relationship between chemical structures and biological activities is researched briskly in the area of 'Medicinal Chemistry' At the base of these structure-based drug design tries, medicinal chemists search the existing drugs of similar chemical structure to target drug for the development of a new drug. Therefore, it is such necessary that an automatic system selects drug files that have a set of chemical moieties matching a user-defined query moiety. Substructure searching is the process of identifying a set of chemical moieties that match a specific query moiety. Testing for substructure searching was developed in the late 1950s. In graph theoretical terms, this problem corresponds to determining which graphs in a set are subgraph isomorphic to a specified query moiety. Testing for subgraph isomorphism has been proved, in the general case, to be an NP- complete problem. For the purpose of overcoming this difficulty, there were computational approaches. On the 1990s, a US patent has been granted on an atom-centered indexing scheme, used by the RS3 system; this has the virtue that the indexes generated can be searched by direct text comparison. This system is commercially used(http://www.acelrys.com/rs3). We define the RS3 system's drawback and present a new indexing scheme. The RS3 system treats substructure searching with substring matching by means of expressing chemical structure aspredefined strings. However, it has insufficient 'rerall' and 'precision‘ because it is impossible to index structures uniquely for same atom and same bond. To resolve this problem, we make the minimum-cost- spanning tree for one centered atom and describe a structure with paths per levels. Expressing 2D chemical structure into 1D a string has limit. Therefore, we break 2D chemical structure into 1D structure fragments. We present in this paper a new index technique to improve recall and precision surprisingly.

Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy

  • Jae-Sung Park;Min Ju Lee;Seong Bin Jo;Young Ae Joe
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.

A Screen for Dual-protection Molecules from a Natural Product Library against Neuronal Cell Death and Microglial Cell Activation (신경세포 사멸과 미세아교세포활성화 억제 동시 가능 천연물질 탐색 연구)

  • Min, Ju-Sik;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.656-662
    • /
    • 2015
  • Natural products and natural product structures play a general and highly significant role in drug discovery and development process because it has various merits and potentials for new drug source that have extensive clinical experience, development time contraction, excellent stability and safety. In several neurological disorders, neuronal death and excessive activation of microglia (neuro-inflammation) are observed. A number of drug discovery-related neuronal cell death and neuro-inflammation was studied from natural products, respectively. However, until now, it has not been possible to study dual-protection molecules recorded in the Natural Product library. In the present study, using the natural product-derived library of the Institute for Korea Traditional Medical Industry, we investigated dual-protective molecules against glutamate (a classical excitatory neurotransmitter)-induced oxidative stress mediated neuronal cell death and LPS-induced excessive activated microglial cells (immune cells of the brain). Chrysophanol, extracted from Rheum palmatum, had dual-protective effects against both glutamate-induced neuronal cell death and LPS-induced NO production, triggering proinflammatory cytokines and microglia activation and resulting in neuroinflammation. Flow-cytometry analysis revealed that chrysophanol had a scavenger effect, scavenging glutamate- and LPS-induced reactive oxygen species (ROS) produced by neuronal and microglial cells, respectively. Based on the present study, chrysophanol may have an important protective role against neuronal cell death and neuroinflammation in the brain. The results may be helpful for studying drug development candidates for treating central nervous system disorders.

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Effects of mixed formulation of tamoxifen and blue honeysuckle on the pharmacokinetics profiles of tamoxifen after single oral administration

  • Hu, Jin-Ryul;Jang, Tae-Woo;Kang, Su-Jin;Ku, Sae-Kwang;Choi, Seong-Hun;Lee, Young-Joon
    • The Journal of Korean Medicine
    • /
    • v.40 no.4
    • /
    • pp.1-15
    • /
    • 2019
  • Objectives: Here, we investigated the effects of concentrated and lyophilized powders Blue honeysuckle (BH) on the PK of tamoxifen, to establish the pharmacokinetics (PK) profiles as one of essential process in new drug development. Methods: After single oral treatment of 0.4 mg/ml of tamoxifen or tamoxifen 0.4 with BH 40, 20 and 10 mg/ml, the plasma were collected at 0.5 hr before administration, 0.5, 1, 2, 3, 4, 6, 8 and 24 hr after end of single or mixed formula treatment. Plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. Tmax, Cmax, AUC, t1/2 and MRTinf were analyzed using noncompartmental PK data analyzer programs. Results: Tamoxifen and BH 40 mg/ml did not induce any significant change on the plasma tamoxifen concentrations, while significant decreases were observed in tamoxifen and BH 10 mg/ml from 2 to 8 hr as compared with tamoxifen only, respectively. Furthermore, significant increases of Tmax in tamoxifen and BH 40 mg/ml, significant decreases of Cmax in tamoxifen and BH 20 mg/ml, significant decreases of AUC0-t, AUC0-inf and MRTinf in tamoxifen and BH 10 mg/ml were demonstrated as compared with tamoxifen only. Conclusion: Taken together, tamoxifen and BH 10 mg/ml induced significant decrease of the oral bioavailability of tamoxifen, while tamoxifen and BH 40 or 20 mg/ml did not critically influenced, suggesting formulated BH concentration-independencies. It, therefore, seems to be needed that pharmacokinetic study after repeated administration should be tested to conclude the effects of BH on the pharmacokinetics of tamoxifen.

Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

  • Shin, Ju-Hyun;Min, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.573-580
    • /
    • 2016
  • Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery.

A Convenient Manufacturing Method for Mass Production of EGCG Rich Green Tea Extract (Epigallocatechin Gallate 고함유 녹차추출물의 제조공정 개선)

  • Seo, Eun Hye;Kim, Eun Jeong;Cheon, Seong Bong;Yoon, Min Ji;Choi, Sang Un;Ryu, Geon-Seek;Ryu, Shi Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • A facile and convenient method was developed for the mass production of epigallocatechin gallate (EGCG) rich green tea extract (Er-GTE). The Er-GTE was successfully obtained from the crude water extract of green tea by the combination of two step purification, i.e., a simple adsorption process on the cation exchange resins (Trilite SCR-B) followed by the chromatography with Diaion HP-20 resins. The green tea extract produced by water extraction under $45^{\circ}C$ was subjected to adsorb on the strongly acidic cation exchange resin, Trilite SCR-B. The eluate passed through the resin was reabsorbed on Diaion HP-20 resin, which was subjected to elute with a mixture of water and alcohol by conventional chromatographical manner. The EGCG content in Er-GTE was estimated above 97% by HP-LC analysis and the newly developed method was regarded as the most suitable and appropriate process for the mass production of epigallocatechin gallate rich green tea extract (Er-GTE).

Gene-Editing: Interpretation of Current Law and Legal Policy

  • Kim, Na-Kyoung
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.343-349
    • /
    • 2017
  • tWith the development of the third-generation gene scissors, CRISPR-Cas9, concerns are being raised about ethical and social repercussions of the new gene-editing technology. In this situation, this article explores the legislation and interpretation of the positive laws in South Korea. The BioAct does not specify and regulate 'gene editing' itself. However, assuming that genetic editing is used in the process of research and treatment, we can look to the specific details of the regulations for research on humans as well as gene therapy research in order to see how genetic editing is regulated under the BioAct. BioAct differentiates the regulation between (born) humans and embryos etc. and the regulation differ entirely in the manner and scope. Moreover, due to the fact that gene therapy products are regarded as drugs, they fall under different regulations. The Korean Pharmacopoeia Act put stringent sanctions on clinical trials for gene therapy products and the official Notification "Approval and Examination Regulations for Biological Products, etc." by Food and Drug Safety Administration may be applied to gene editing for gene therapy purposes.