DOI QR코드

DOI QR Code

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh (Department of Chemistry, Gorgan Branch, Islamic Azad University) ;
  • Peyghan, Ali Ahmadi (Young Researchers Club, Islamic Azad University) ;
  • Hashemian, Saeede (Department of Chemistry, Yazd Branch, Islamic Azad University) ;
  • Baei, Mohammad T. (Department of Chemistry, Azadshahr Branch, Islamic Azad University)
  • Received : 2012.04.19
  • Accepted : 2012.07.11
  • Published : 2012.10.20

Abstract

The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Keywords

References

  1. Leuschner, C.; Kumar, C. In Nanofabrication Towards Biomedical Application; Jormes, J., Leuschner, C., Eds.; Wiley-VCH: 2005; pp 289-326
  2. Ferrari, M. Nature Rev. 2005, 5, 161. https://doi.org/10.1038/nrc1566
  3. Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M. Chem. Commun. 2005, 5, 571.
  4. Bianco, A.; Kostarelos, K.; Prato, M. Biology 2005, 9, 674.
  5. Ijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  6. Prato, M.; Kostarelos, K.; Bianco, A. Acc. Chem. Res. 2008, 41, 60. https://doi.org/10.1021/ar700089b
  7. Kam, N. W. S.; Dai, H. Physica Status Solidi B: Basic Solid State Phys. 2006, 243, 3561. https://doi.org/10.1002/pssb.200669226
  8. Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biochim. Biophys. Acta 2006, 1758, 404. https://doi.org/10.1016/j.bbamem.2005.10.008
  9. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483. https://doi.org/10.1126/science.273.5274.483
  10. Hirsch, A. Angew Chem. Int. Ed. Engl. 2002, 41, 1853. https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  11. Dyke, C. A.; Tour, J. M. Chem. Eur. J. 2004, 10, 812. https://doi.org/10.1002/chem.200305534
  12. Baei, M. T.; Soltani, A.; Moradi, A. V.; Tazikeh, L. E. Comput. Theoret. Chem. 2011, 970, 30. https://doi.org/10.1016/j.comptc.2011.05.021
  13. Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Euro. Phys. Lett. 1994, 28, 335. https://doi.org/10.1209/0295-5075/28/5/007
  14. Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081. https://doi.org/10.1103/PhysRevB.49.5081
  15. Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737. https://doi.org/10.1103/PhysRevLett.76.4737
  16. Bengu, E.; Marks, L. D. Phys. Rev. Lett. 2001, 86, 2385. https://doi.org/10.1103/PhysRevLett.86.2385
  17. Nirmala, V.; Kolandaivel, P. J. Mol. Struct. (Theochem) 2007, 817, 137.
  18. Solozhenko, V. L.; Lazarenko, A. G.; Petitet, J. P. J. Phys. Chem. Solids 2001, 62, 1331. https://doi.org/10.1016/S0022-3697(01)00030-0
  19. Zhi, C.; Bando, Y.; Tang, C. J. Am. Chem. Soc. 2005, 127, 17144. https://doi.org/10.1021/ja055989+
  20. Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Nanoscale Res. Lett. 2009, 4(2), 113. https://doi.org/10.1007/s11671-008-9210-9
  21. Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. https://doi.org/10.1021/ja01547a064
  22. Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.; Schmidt, S. P.; Holms, J. H.; Young, P. R.; Carter, G. W. J. Med. Chem. 1988, 31, 1719. https://doi.org/10.1021/jm00117a010
  23. Patt, W. C.; Hamilton, H. W.; Taylor, M. D.; Ryan, M. J.; Taylor, D. G., Jr.; Connolly, C. J. C.; Doherty, A. M.; Klutchko, S. R.; Sircar, I.; Steinbaugh, B. A.; Batley, B. L.; Painchaud, C. A.; Rapundalo, S. T.; Michniewicz, B. M.; Olson, S. C. J. J. Med. Chem. 1992, 35, 2562. https://doi.org/10.1021/jm00092a006
  24. Tsuji, K.; Ishikawa, H. Bioorg. Med. Chem. Lett. 1994, 4, 1601. https://doi.org/10.1016/S0960-894X(01)80574-6
  25. Bell, F. W.; Cantrell, A. S.; Hoegberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordon, C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M., Jr.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X.-X. J. Med. Chem. 1995, 38, 4929. https://doi.org/10.1021/jm00025a010
  26. Bovey, F. A. Nuclear Magnetic Resonance Spectroscopy; Academic Press: San Diego, 1988.
  27. Das, T. P.; Han, E. L. Nuclear Quadrupole Resonance Spectroscopy; Academic Press: New York, 1958.
  28. Baei, M. T.; Sayyed Alang, S. Z.; Moradi, A. V.; Torabi, P. J. Mol. Model 2011, doi: 10.1007/s00894-011-1130-4
  29. Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 783. https://doi.org/10.1007/s00706-011-0498-2
  30. Baei, M. T.; Moradi, A. V.; Moghimi, M.; Torabi, P. Comput. Theoret. Chem. 2011, 967, 179. https://doi.org/10.1016/j.comptc.2011.04.015
  31. Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 1097. https://doi.org/10.1007/s00706-011-0547-x
  32. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. https://doi.org/10.1021/cr040109f
  33. Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Struct. Chem. 2009, 20, 1079. https://doi.org/10.1007/s11224-009-9512-2
  34. Parr, R. G.; Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
  35. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
  36. Tournus, F.; Charlier, J. C. Phys. Rev. B 2005, 71, 165421. https://doi.org/10.1103/PhysRevB.71.165421
  37. Drago, R. S. Physical Methods for Chemists, 2nd ed.; Saunders College Publishing: Florida, 1992.
  38. Pyykkö, P. Mol. Phys. 2001, 99, 1617. https://doi.org/10.1080/00268970110069010
  39. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, revision B03, Gaussian Inc., Pittsburgh, PA, 2003.
  40. Politzer, P.; Lane, P.; Murray, J. S.; Concha, M. C. J. Mol. Model 2005, 11, 1. https://doi.org/10.1007/s00894-004-0202-0
  41. Peralta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O'Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21. https://doi.org/10.1021/nl020222q
  42. Hoffmann, A.; Sebastiani, D.; Sugiono, E.; Yun, S.; Kim, K. S.; Spiess, H. W.; Schnell, I. Chem. Phys. Lett. 2004, 11, 164.

Cited by

  1. DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids vol.25, pp.1, 2014, https://doi.org/10.1007/s11224-013-0292-3
  2. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems vol.7, pp.31, 2015, https://doi.org/10.1021/acsami.5b04101
  3. 2,4-Disubstituted thiazoles as multitargated bioactive molecules vol.25, pp.9, 2016, https://doi.org/10.1007/s00044-016-1610-2
  4. S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs vol.38, pp.4, 2017, https://doi.org/10.1080/17415993.2017.1313255
  5. Electronic and Work Function-Based Sensors for Acetylsalicylic Acid Based on the AlN and BN Nanoclusters: DFT Studies pp.1572-8862, 2018, https://doi.org/10.1007/s10876-018-1466-3
  6. A Computational Study on the Purinethol Drug Adsorption on the AlN Nanocone and Nanocluster vol.29, pp.4, 2018, https://doi.org/10.1007/s10876-018-1381-7
  7. Quantum‐Chemical Modeling of Cyclic Peptide‐Selenium Nanoparticle as an Anticancer Drug Nanocarrier vol.41, pp.1, 2012, https://doi.org/10.1002/bkcs.11912
  8. Determination of H2S, COS, CS2 and SO2 by an aluminium nitride nanocluster: DFT studies vol.118, pp.7, 2012, https://doi.org/10.1080/00268976.2019.1658909
  9. Theoretical Investigation of Interaction 7-Hydroxy Phenothiazine 3-One Dye with Nanotube: a DFT Study vol.15, pp.1, 2012, https://doi.org/10.1134/s1990793121010152
  10. Review of the synthesis and biological activity of thiazoles vol.51, pp.5, 2012, https://doi.org/10.1080/00397911.2020.1854787
  11. Characterization and Inhibitor Activity of Two Newly Synthesized Thiazole vol.8, pp.1, 2012, https://doi.org/10.1007/s40735-021-00625-1