Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.10.3285

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube  

Moradi, Ali Varasteh (Department of Chemistry, Gorgan Branch, Islamic Azad University)
Peyghan, Ali Ahmadi (Young Researchers Club, Islamic Azad University)
Hashemian, Saeede (Department of Chemistry, Yazd Branch, Islamic Azad University)
Baei, Mohammad T. (Department of Chemistry, Azadshahr Branch, Islamic Azad University)
Publication Information
Abstract
The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.
Keywords
Boron nitride nanotubes; Drug delivery; Adsorption; Binding energy; Quantum molecular descriptors;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Peralta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O'Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21.   DOI   ScienceOn
2 Patt, W. C.; Hamilton, H. W.; Taylor, M. D.; Ryan, M. J.; Taylor, D. G., Jr.; Connolly, C. J. C.; Doherty, A. M.; Klutchko, S. R.; Sircar, I.; Steinbaugh, B. A.; Batley, B. L.; Painchaud, C. A.; Rapundalo, S. T.; Michniewicz, B. M.; Olson, S. C. J. J. Med. Chem. 1992, 35, 2562.   DOI
3 Tsuji, K.; Ishikawa, H. Bioorg. Med. Chem. Lett. 1994, 4, 1601.   DOI   ScienceOn
4 Bell, F. W.; Cantrell, A. S.; Hoegberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordon, C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M., Jr.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X.-X. J. Med. Chem. 1995, 38, 4929.   DOI
5 Bovey, F. A. Nuclear Magnetic Resonance Spectroscopy; Academic Press: San Diego, 1988.
6 Das, T. P.; Han, E. L. Nuclear Quadrupole Resonance Spectroscopy; Academic Press: New York, 1958.
7 Baei, M. T.; Sayyed Alang, S. Z.; Moradi, A. V.; Torabi, P. J. Mol. Model 2011, doi: 10.1007/s00894-011-1130-4
8 Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 783.   DOI
9 Baei, M. T.; Moradi, A. V.; Moghimi, M.; Torabi, P. Comput. Theoret. Chem. 2011, 967, 179.   DOI   ScienceOn
10 Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 1097.   DOI
11 Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065.   DOI   ScienceOn
12 Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Struct. Chem. 2009, 20, 1079.   DOI
13 Parr, R. G.; Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.   DOI   ScienceOn
14 Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.   DOI
15 Tournus, F.; Charlier, J. C. Phys. Rev. B 2005, 71, 165421.   DOI   ScienceOn
16 Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biochim. Biophys. Acta 2006, 1758, 404.   DOI   ScienceOn
17 Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.   DOI   ScienceOn
18 Hirsch, A. Angew Chem. Int. Ed. Engl. 2002, 41, 1853.   DOI   ScienceOn
19 Dyke, C. A.; Tour, J. M. Chem. Eur. J. 2004, 10, 812.   DOI   ScienceOn
20 Baei, M. T.; Soltani, A.; Moradi, A. V.; Tazikeh, L. E. Comput. Theoret. Chem. 2011, 970, 30.   DOI   ScienceOn
21 Bengu, E.; Marks, L. D. Phys. Rev. Lett. 2001, 86, 2385.   DOI   ScienceOn
22 Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Euro. Phys. Lett. 1994, 28, 335.   DOI   ScienceOn
23 Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.   DOI   ScienceOn
24 Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.   DOI   ScienceOn
25 Nirmala, V.; Kolandaivel, P. J. Mol. Struct. (Theochem) 2007, 817, 137.
26 Solozhenko, V. L.; Lazarenko, A. G.; Petitet, J. P. J. Phys. Chem. Solids 2001, 62, 1331.   DOI   ScienceOn
27 Zhi, C.; Bando, Y.; Tang, C. J. Am. Chem. Soc. 2005, 127, 17144.   DOI   ScienceOn
28 Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Nanoscale Res. Lett. 2009, 4(2), 113.   DOI   ScienceOn
29 Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.   DOI
30 Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.; Schmidt, S. P.; Holms, J. H.; Young, P. R.; Carter, G. W. J. Med. Chem. 1988, 31, 1719.   DOI
31 Bianco, A.; Kostarelos, K.; Prato, M. Biology 2005, 9, 674.
32 Leuschner, C.; Kumar, C. In Nanofabrication Towards Biomedical Application; Jormes, J., Leuschner, C., Eds.; Wiley-VCH: 2005; pp 289-326
33 Ferrari, M. Nature Rev. 2005, 5, 161.   DOI   ScienceOn
34 Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M. Chem. Commun. 2005, 5, 571.
35 Ijima, S. Nature 1991, 354, 56.   DOI
36 Prato, M.; Kostarelos, K.; Bianco, A. Acc. Chem. Res. 2008, 41, 60.   DOI   ScienceOn
37 Kam, N. W. S.; Dai, H. Physica Status Solidi B: Basic Solid State Phys. 2006, 243, 3561.   DOI   ScienceOn
38 Hoffmann, A.; Sebastiani, D.; Sugiono, E.; Yun, S.; Kim, K. S.; Spiess, H. W.; Schnell, I. Chem. Phys. Lett. 2004, 11, 164.
39 Drago, R. S. Physical Methods for Chemists, 2nd ed.; Saunders College Publishing: Florida, 1992.
40 Pyykkö, P. Mol. Phys. 2001, 99, 1617.   DOI
41 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, revision B03, Gaussian Inc., Pittsburgh, PA, 2003.
42 Politzer, P.; Lane, P.; Murray, J. S.; Concha, M. C. J. Mol. Model 2005, 11, 1.   DOI