• Title/Summary/Keyword: Nevanlinna characteristic function

Search Result 5, Processing Time 0.02 seconds

On the growth of entire functions satisfying second order linear differential equations

  • Kwon, Ki-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.487-496
    • /
    • 1996
  • Let f(z) be an entire function. Then the order $\rho(f)$ of f is defined by $$ \rho(f) = \overline{lim}_r\to\infty \frac{log r}{log^+ T(r,f)} = \overline{lim}_r\to\infty \frac{log r}{log^+ log^+ M(r,f)}, $$ where T(r,f) is the Nevanlinna characteristic of f (see [4]), $M(r,f) = max_{$\mid$z$\mid$=r} $\mid$f(z)$\mid$$ and $log^+ t = max(log t, 0)$.

  • PDF

COMPLEX DELAY-DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE

  • NAGASWARA, P.;RAJESHWARI, S.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.507-513
    • /
    • 2022
  • In this paper, we investigate some results on complex delay-differential equations of the classical Malmquist theorem. A classic illustrations of their results states us that if a complex delay equation w(t + 1) + w(t - 1) = R(t, w) with R(t, w) rational in both arguments admits (concede) a transcendental meromorphic solution of finite order, then degwR(t, w) ≤ 2. Development and upgrade of such results are presented in this paper. In addition, Borel exceptional zeros and poles seem to appear in special situations.

ITERATED ENTIRE FUNCTIONS AND THEIR GROWTH PROPERTIES ON THE BASIS OF (p, q)-TH ORDER

  • Biswas, Tanmay;Choi, Junesang;Das, Pranab;Datta, Sanjib Kumar
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.169-212
    • /
    • 2016
  • Entire functions have been investigated so popularly to have been divided into a large number of specialized subjects. Even the limited subject of entire functions is too vast to be dealt with in a single volume with any approach to completeness. Here, in this paper, we choose to investigate certain interesting results associated with the comparative growth properties of iterated entire functions using (p, q)-th order and (p, q)-th lower order, in a rather comprehensive and systematic manner.