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GROWTH ANALYSIS OF COMPOSITION OF INTEGER
TRANSLATED ENTIRE AND MEROMORPHIC FUNCTIONS

Manab Biswas a, ∗ and Debashis Kumar Mandal b

Abstract. In this paper we study the effect of integer translation on Nevanlinna’s
characteristic function of a meromorphic function. Also, we investigate compara-
tive growth of integer translated entire and meromorphic functions under different
conditions.

1. Introduction and Preliminary

Let f be a meromorphic function (i.e., regular except for poles) defined on the
complex plane and let a be a complex number finite or infinite. To study how
the values of f are distributed it is essential to explore the distribution of the
solutions of the equation f (z) = a. This includes an estimate of the number of
roots nf (r, a) , counted with or without multiplicity in a disc |z| ≤ r for any non-
negative real number r, estimates on the growth and the asymptotics of the number
of such solutions in terms of r, the comparison of the various estimates when the
constant a varies, etc.

An oldest such result is the Fundamental Theorem of Algebra stating that a
polynomial of degree n has n complex roots (counting with proper multiplicity).
This theorem allows us to write any polynomial f (z) in the form

f (z) = czp
n∏

r=p+1

(
1− z

zr

)
,

where zr are the zeros of f (z) other than those at the origin. Precisely, when z →∞
the growth of a polynomial f (z) of degree n ≥ 1 is equal to n. Then

lim
z→∞

f (z)
zn

= d,
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where d is the coefficient of the monomial of highest degree of f . Thus, growth
of the polymonial f can be read on its coefficients. Borel [1] first gave the concept
order of growth for an entire function f by the quantity

ρf = {inf µ : log Mf (r) = O (rµ) , 0 ≤ µ ≤ ∞} ,

where the maximum modulus Mf (r) = max
|z|=r

|f (z)|. With such a definition, the

order of a polynomial is zero, the exponential function ez has order one and the
function eez

has infinite order. Later he reformulated the definition as : An entire
function f of order ρf (0 < ρf < ∞) satisfies

lim sup
r→∞

log nf (r, a)
log r

≤ ρf

for every finite complex value ‘a’, with equality holding except possibly for one value
a. Here, nf (r, a) is the number of roots with multiplicity of the equation f(z) = a

in the disc |z| ≤ r. Borel’s definition of order was used later by Nevanlinna [9] who
generalized it to the setting of meromorphic functions that are not necessarily entire.

For a ∈ C ∪ {∞} we denote by nf (t, a) (nf (t, a)) the number of a-points
(distinct a-points) of a non-constant meromorphic function f in |z| ≤ t, where an
∞-point is a pole of f . We put

Nf (r, a) =

r∫

0

nf (t, a)− nf (0, a)
t

dt + nf (0, a) log r

and

Nf (r, a) =

r∫

0

nf (t, a)− nf (0, a)
t

dt + nf (0, a) log r.

The function Nf (r, a)
(
Nf (r, a)

)
are called the counting function for a-points (dis-

tinct a-points) of f . In many occassions Nf (r,∞) and Nf (r,∞) are denoted by
Nf (r) and Nf (r) respectively . We also put

mf (r) =
1
2π

2π∫

0

log+
∣∣∣f

(
reiθ

)∣∣∣ dθ,

where

log+ x = log x if x ≥ 1

= 0 if 0 ≤ x ≤ 1.
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For a ∈ C, we denote by mf (r, a) the function m 1
f−a

(r) and we mean by mf (r,∞) the

function mf (r) which is called the proximity function of f . The function Tf (r) =
mf (r) + Nf (r) is called the Nevanlinna’s Characteristic function of f. If f (z) is
an entire function, then the Nevanlinna’s Characteristic function Tf (r) of f (z) is
defined as

Tf (r) = mf (r) .

Further for the entire f (z) we have

(1) Tf (r) ≤ log+ Mf (r) ≤ R + r

R− r
Tf (R) cf. [6],

where 0 < r ≤ R.

We shall assume that the reader is familiar with the basic results and the standard
notations of the Nevanlinna value distribution theory, see [6, 12] for more details.
For all r ∈ R, we define exp[1] r = er and exp[k] r = exp

(
exp[k−1] r

)
, k ∈ N. We

also define for all r sufficiently large log[1] r = log r, log[k] r = log
(
log[k−1] r

)
, k ∈ N.

Moreover, we denote by exp[0] r = r, log[0] r = r, log[−1] r = exp[1] r and exp[−1] r =
log[1] r.

Let us recall some well-known definitions.

Definition 1. The Nevanlinna’s deficiency of a finite or infinite complex number
‘a’ with respect to a meromorphic function g are defined as

δg (a) = 1− lim sup
r→∞

Ng (r, a)
Tg (r)

= lim inf
r→∞

mg (r, a)
Tg (r)

.

Definition 2. The order ρf and lower order λf of a meromorphic function f are
given by

ρf = lim sup
r→∞

log Tf (r)
log r

, λf = lim inf
r→∞

log Tf (r)
log r

respectively. Also for an integer l ≥ 2, the generalised order ρ
[l]
f and the generalised

lower order λ
[l]
f of a meromorphic function are respectively defined by

ρ
[l]
f = lim sup

r→∞
log[l−1] Tf (r)

log r
, λ

[l]
f = lim inf

r→∞
log[l−1] Tf (r)

log r
cf. [10].

and if f is entire, then Tf (r) can be replaced with log Mf (r) .
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Juneja, Kapoor and Bajpai [7] defined (p, q)-order and (p, q)-lower order of an
entire function respecitvely as follows:

ρf (p, q) = lim sup
r→∞

log[p] Mf (r)

log[q] r
and λf (p, q) = lim inf

r→∞
log[p] Mf (r)

log[q] r
,

where p, q are positive integers with p > q. When f is meromorphic, one can easily
verify that

ρf (p, q) = lim sup
r→∞

log[p−1] Tf (r)

log[q] r
and λf (p, q) = lim inf

r→∞
log[p−1] Tf (r)

log[q] r
,

where p, q are positive integers with p > q. Clearly, ρf (2, 1) = ρ
[2]
f = ρf and

λf (2, 1) = λ
[2]
f = λf .

The translation of a meromorphic function f (z) be denoted by f (z + n) , where
n ∈ N. For each n ∈ N, one may obtain a function with some properties. Let us
denote this family by fn (z) , i.e.,

fn (z) = {f (z + n) : n ∈ N} .

It is clear that the number of poles of f may be changed in a finite region after
translation but it remains unaltered in the open complex plane C, i.e.,

(2) Nf(z+n) (r) = Nf (r) + en,

where en is a residue term such that en → 0 as r →∞. Also,

mf(z+n) (r) =
1
2π

2π∫

0

log+
∣∣∣f

(
reiθ + n

)∣∣∣ dθ

= mf (r) + e′n ,(3)

where e′n (may be distinct from en) be such that e′n → 0 as r →∞. Therefore, from
(2) and (3) we get

Nf(z+n) (r) + mf(z+n) (r) = Nf (r) + en + mf (r) + e′n
i.e., Tf(z+n) (r) = Tf (r) + en + e′n.

Now if n varies, then the Nevanlinna’s Characteristic function for the family fn (z)
is

(4) Tfn (r) = nTf (r) +
∑

n

(
en + e′n

)
.
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Again it is obvious that the maximum modulus Mf (r) of an entire function f (z)
may be changed in a finite region after translation but it remains unaltered in the
open complex plane C, and for the family fn (z) we obtain

Mfn (r) = nMf (r) +
∑
n

e
′′
n ,

where e
′′
n (may be distinct from en, e′n) be such that e

′′
n → 0 as r →∞. This implies,

(5) log Mfn (r) = log Mf (r) + O (1) .

Now from (4) we obtain

log[p−1] Tfn (r) = log[p−1] n + log[p−1] Tf (r) + log[p−1]


1 +

∑
n

(en + e′n)

nTf (r)


 ,

where en → 0, e′n → 0 as r →∞. Since Tf (r) is an increasing function of r, therefore

(6) log[p−1] Tfn (r) = log[p−1] Tf (r) + O (1) .

This implies,

lim sup
r→∞

log[p−1] Tfn (r)

log[q] r
= lim sup

r→∞
log[p−1] Tf (r)

log[q] r
.

or, ρfn (p, q) = ρf (p, q) .

Similary, it can be proved that

λfn (p, q) = λf (p, q) .

Datta and Tamang [4]; Biswas and Datta [3]; Tamang and Biswas [11] etc. inves-
tigated the changes to Nevanlinna’s Characteristic function of the integer translated
meromorphic functions. They developed a new technique to describe the compara-
tive growth of composition of entire and meromorphic functions. Their work moti-
vated us to study further on this topic. But our investgations focus on finding the
comparative growth related to (p, q)-order. Using (p, q)-order we prove some new
result

2. Main Results

In this section, we start with some existing results on comparative growth.

Lemma 1 ([8]). Let g be an entire function with λg < ∞ and assume that ai(i =
1, 2, ....n; n ≤ ∞) are entire functions satisfying Tai (r) = o {Tg (r)} .
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If
n∑

i=1
δg(ai) = 1, then

lim
r→∞

Tg (r)
log Mg (r)

=
1
π

.

Lemma 1 ([2]). If f be a meromorphic function and g be an entire fucntion, then
for all sufficiently large values of r,

Tf◦g (r) ≤ {1 + o (1)} Tg (r)
log Mg (r)

Tf (Mg (r)) .

Lemma 3 ([7, 5]). Let f be an entire function with non zero finite generalised order
ρ
[l]
f (non zero finite generalised lower order λ

[l]
f ). If p−q = l−1, then the (p, q)-order

ρf (p, q) (lower (p, q)-order λf (p, q)) of f will be equal to 1. If p − q 6= l − 1, then
ρf (p, q) (λf (p, q) is either zero or infinity).

Now, we will prove the main results of our paper. Their proofs mainly depend
on the results stated above.

Theorem 1. Let f be meromorphic and g be entire such that ρf (p, q) and λg are
both finite, where p, q are any two positive integers with p > q. Also, suppose that
there exist entire functions ai (i = 1, 2, ..., k; k ≤ ∞) satisfying Tai (r) = o {Tg (r)} as

r →∞ and
k∑

i=1
δg(ai) = 1. If fm (z) = {f (z + m) : m ∈ N} and gn (z) = {g (z + n) :

n ∈ N}, then for any R > 2r

lim sup
r→∞

log[p−1] Tfm◦gn (r)
log Mgn (R)

≤ 3ρf (p, q)
π

.

Proof. Let fm ◦ gn = ht , where h is a meromorphic function and t ∈ N. So, ht can
be expressed as ht (z) = {h (z + t) : t ∈ N} . Then,

Tht (r) = tTh (r) +
∑

t

(
et + e′t

)
,

where et → 0, e′t → 0 as r →∞. That is,

(7) Tfm◦gn (r) = tTf◦g (r) +
∑

t

(
et + e′t

)
.

Now by Lemma 2 and the inequality Tg (r) ≤ log+ Mg (r) , we get from (7) for any
positive ε and for all sufficiently large values of r that
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log[p−1] Tfm◦gn (r) ≤ log[p−1] Tf (Mg (r)) + O (1)

or, log[p−1] Tfm◦gn (r) ≤ (ρf (p, q) + ε) log[q] (Mg (r)) + O (1)

or, log[p−1] Tfm◦gn (r) ≤ (ρf (p, q) + ε) log Mg (r) + O (1) .(8)

Since by (1) , we have Tg (r) ≤ log+ Mg (r) ≤ 3Tg (2r) , then (8) gives

log[p−1] Tfm◦gn (r) ≤ 3 (ρf (p, q) + ε)Tg (2r) .

In view of (5) , for any R > 2r the above inequality implies

(9)
log[p−1] Tfm◦gn (r)

log Mgn (R)
≤ 3 (ρf (p, q) + ε) Tg (2r)

log Mg (2r) + O (1)
.

Since ε > 0 is arbitrary, therfore by Lemma 1 and (9) we obtain

lim sup
r→∞

log[p−1] Tfm◦gn (r)
log Mgn (R)

≤ 3ρf (p, q)
π

.

This completes the proof. ¤

Similarly, the following theorem also can be proved.

Theorem 2. Let f be meromorphic and g be entire such that λf (p, q) and λg are
both finite, where p, q are any two positive integers with p > q. Also, suppose that
there exist entire functions ai (i = 1, 2, ..., k; k ≤ ∞) satisfying Tai (r) = o {Tg (r)} as

r →∞ and
k∑

i=1
δg(ai) = 1. If fm (z) = {f (z + m) : m ∈ N} and gn (z) = {g (z + n) :

n ∈ N}, then for any R > 2r

lim inf
r→∞

log[p−1] Tfm◦gn (r)
log Mgn (R)

≤ 3λf (p, q)
π

.

Theorem 3. Let f and g be any two meromorphic functions such that ρf (p, q) < ∞
and λf◦g (p, q) = ∞, where p, q are positive integers with p > q > 1. If fm (z) =
{f (z + m) : m ∈ N} and gn (z) = {g (z + n) : n ∈ N}, then for every positive
number β,

lim
r→∞

log[p−1] Tfm◦gn (r)

log[p−1] Tfm (rβ)
= ∞.

Proof. If possible let the value of the limit is not infinite. Then, we can find a
constant α > 0 such that for a sequence of values of r tending to infinity

(10) log[p−1] Tfm◦gn (r) ≤ α log[p−1] Tfm

(
rβ

)
.
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Again for q > 1, from the definition of ρfm (p, q) it follows for any positive ε and for
all sufficiently large values of r that

log[p−1] Tfm

(
rβ

)
≤ (ρfm (p, q) + ε) log[q] rβ

(11) or, log[p−1] Tfm

(
rβ

)
≤ (ρf (p, q) + ε) log[q] r + O (1) , as ρfm = ρf .

Thus, from (10) and (11) we have for a sequence of values of r tending to infinity
that

log[p−1] Tfm◦gn (r)

log[q] r
≤ α (ρf (p, q) + ε) log[q] r + O (1)

log[q] r
.

This implies on using (7) that

log[p−1] t + log[p−1] Tf◦g (r) + log[p−1]

(
1 +

∑
t

(et+e′t)

tTf◦g(r)

)

log[q] r

≤ α (ρf (p, q) + ε) log[q] r + O (1)

log[q] r

or,
log[p−1] Tf◦g (r) + O (1)

log[q] r
≤ α (ρf (p, q) + ε) log[q] r + O (1)

log[q] r

or,
log[p−1] Tf◦g (r)

log[q] r
≤ α (ρf (p, q) + ε) log[q] r + O (1)

log[q] r
.

Since ε > 0 is arbitrary, therefore,

lim inf
r→∞

log[p−1] Tf◦g (r)

log[q] r
≤ αρf (p, q) < ∞

i.e, λf◦g (p, q) < ∞,

which is a contradiction. Hence, the theorem. ¤

Remark 1. Theorem 3 is also valid with “limit superior” instead of “limit” if
λf◦g (p, q) = ∞ is replaced by ρf◦g (p, q) = ∞ and the remaining other conditions
are same.

Corollary 1. Under the assumptions of Remark 1

lim sup
r→∞

log[p−2] Tfm◦gn (r)

log[p−2] Tfm (rβ)
= ∞.



GROWTH ANALYSIS OF COMPOSITION OF FUNCTIONS 277

Proof. From Remark 1, we obtain for all sufficiently large values of r and for K > 1,

log[p−1] Tfm◦gn (r) > K log[p−1] Tfm

(
rβ

)

i.e., log[p−2] Tfm◦gn (r) >
{

log[p−2] Tfm

(
rβ

)}K
,

from which the Corollary follows. ¤

Corollary 2. Under the same conditions of Theorem 3 if q = 1,

lim
r→∞

log[p−1] Tfm◦gn (r)

log[p−1] Tfm (rβ)
= ∞.

Corollary 3. Under the same conditions of Remark 1 if q = 1,

lim sup
r→∞

log[p−1] Tfm◦gn (r)

log[p−1] Tfm (rβ)
= ∞.

Remark 2. The condition λf◦g (p, 1) = ∞ in Corollary 2 is necessary as we see in
the following example.

Example 1. Let f = exp z, g = z and p = 2, q = 1, β = 1. Then ρf (p, 1) =
λf◦g (p, 1) = 1. Now, fm (z) = exp (z + m) , gn (z) = z + n and (fm ◦ gn) (z) =
fm (gn (z)) = fm (z + n) = exp (z + m + n) , where m,n ∈ N. So, Tfm◦gn (r) =
r+m+n

π + O (1), Tfm (r) = r+m
π + O (1). Therefore,

lim
r→∞

log[p−1] Tfm◦gn (r)

log[p−1] Tfm (rβ)
= lim

r→∞
log Tfm◦gn (r)
log Tfm (r)

= lim
r→∞

r+m+n
π + O (1)

r+m
π + O (1)

= 1 6= ∞,

which is contrary to Corollary 2.

Remark 3. Considering f = exp z, g = z and p = 2, q = 1, β = 1 one can easily
verify that ρf◦g (p, 1) = ∞ in Corollary 3 is essential.

Theorem 4. Let f be meromorphic and g be entire such that ρg (s, t) < λf (p, q) ≤
ρf (p, q) < ∞, where p, q, s, t are positive integer with p > q and s > t. If fm (z) =
{f (z + m) : m ∈ N} and gn (z) = {g (z + n) : n ∈ N}, then for any R > r

(i) lim sup
r→∞

{
log[p−1] Tfm◦gn

(
exp[t−1] r

)}2

log[p−2] Tfm

(
exp[q−1] r

)
log[q] Mgn

(
exp[t−1] R

) = 0, if q ≥ s
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and

(ii) lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)
log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

)
log[q] Mgn

(
exp[t−1] R

) = 0, if q < s.

Proof. From the definition of (p, q)-lower order of fm we have for any positive ε and
for all sufficiently large values of r,

log[p−1] Tfm

(
exp[q−1] r

)
≥ (λfm (p, q)− ε) log[q]

(
exp[q−1] r

)

or, log[p−1] Tfm

(
exp[q−1] r

)
≥ (λfm (p, q)− ε) log r

or, log[p−2] Tfm

(
exp[q−1] r

)
≥ r(λfm (p,q)−ε)

or, log[p−2] Tfm

(
exp[q−1] r

)
≥ r(λf (p,q)−ε), as λfm = λf .(12)

Again by Lemma 2 and the inequality Tg (r) ≤ log+ Mg (r) , we get from (7) for all
sufficiently large values of r that

log[p−1] Tfm◦gn (r) ≤ log[p−1] Tf (Mg (r)) + O (1)

or, log[p−1] Tfm◦gn

(
exp[t−1] r

)
≤ log[p−1] Tf

(
Mg

(
exp[t−1] r

))
+ O (1)

or, log[p−1] Tfm◦gn

(
exp[t−1] r

)

≤ (ρf (p, q) + ε) log[q] Mg

(
exp[t−1] r

)
+ O (1) .(13)

This implies on using (5) that for any R > r,

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

) ≤ (ρf (p, q) + ε) log[q] Mg

(
exp[t−1] r

)
+ O (1)

log[q] Mg

(
exp[t−1] R

)
+ O (1)

or,
log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

) ≤ (ρf (p, q) + ε) log[q] Mg

(
exp[t−1] r

)
+ O (1)

log[q] Mg

(
exp[t−1] r

)
+ O (1)

or,
log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

) ≤ (ρf (p, q) + ε) +
O (1)

log[q] Mg

(
exp[t−1] r

)
+ O (1)

.

Since ε (> 0) is arbitrary, therefore,

(14) lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

) ≤ ρf (p, q) .

We may consider the following two cases:
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Case-I: Let q ≥ s. Then from (13) ,

log[p−1] Tfm◦gn

(
exp[t−1] r

)

≤ (ρf (p, q) + ε) log[s−1] Mg

(
exp[t−1] r

)
+ O (1) .(15)

Now for all sufficiently large values of r,

log[s] Mg

(
exp[t−1] r

)
≤ (ρg (s, t) + ε) log[t]

(
exp[t−1] r

)

or, log[s] Mg

(
exp[t−1] r

)
≤ (ρg (s, t) + ε) log r

(16) or, log[s−1] Mg

(
exp[t−1] r

)
≤ r(ρg(s,t)+ε).

Therefore, from (15) and (16) we obtain

(17) log[p−1] Tfm◦gn

(
exp[t−1] r

)
≤ (ρf (p, q) + ε) r(ρg(s,t)+ε) + O (1) .

Again by (12) and (17) ,

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) ≤ (ρf (p, q) + ε) r(ρg(s,t)+ε) + O (1)
rλf (p,q)−ε

(18) ≤ (ρf (p, q) + ε) .
1

r
2

(
λf (p,q) − ρg(s,t)

2
− ε

) +
O (1)

rλf (p,q)−ε
.

Since ρg (s, t) < λf (p, q) , we can choose ε (> 0) in such a way that

0 < ε <
λf (p, q)− ρg (s, t)

2
i.e, 0 < ρg (s, t) + ε < λf (p, q)− ε.(19)

Applying (19) we get from (18) that

(20) lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) = 0.

Finally, from (14) and (20) we have

lim sup
r→∞

{
log[p−1] Tfm◦gn

(
exp[t−1] r

)}2

log[p−2] Tfm

(
exp[q−1] r

)
log[q] Mgn

(
exp[t−1] R

)

≤ lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) . lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

)

= lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) . lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

)

≤ 0.ρf (p, q) = 0.
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This proves the first part.

Case-II: Let q < s. Then from (13) we have for all sufficiently large values of r

that

log[p−1] Tfm◦gn

(
exp[t−1] r

)

≤ (ρf (p, q) + ε) exp[s−q] log[s] Mg

(
exp[t−1] r

)
+ O (1) .(21)

Now for all sufficiently large values of r

log[s] Mg

(
exp[t−1] r

)
≤ (ρg (s, t) + ε) log[t] exp[t−1] r

or, log[s] Mg

(
exp[t−1] r

)
≤ (ρg (s, t) + ε) log r

or, exp[s−q] log[s] Mg

(
exp[t−1] r

)
≤ exp[s−q] log r(ρg(s,t)+ε)

(22) or, exp[s−q] log[s] Mg

(
exp[t−1] r

)
≤ exp[s−q−1] r(ρg(s,t)+ε).

Therefore from (21) and (22) ,

log[p−1] Tfm◦gn

(
exp[t−1] r

)
≤ (ρf (p, q) + ε) exp[s−q−1] r(ρg(s,t)+ε) + O (1)

or, log[p] Tfm◦gn

(
exp[t−1] r

)
≤ exp[s−q−2] r(ρg(s,t)+ε) + O (1)

(23) or, log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)
≤ r(ρg(s,t)+ε) + O (1) .

Again, combining (12) and (23) we obtain

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) ≤ r(ρg(s,t)+ε) + O (1)
rλf (p,q)−ε

≤ 1

r
2

(
λf (p,q) − ρg(s,t)

2
− ε

) +
O (1)

rλf (p,q)−ε
,

which further implies on using (19) that

(24) lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) = 0.
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Finally, from (14) and (24) we get

lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)
log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

)
log[q] Mgn

(
exp[t−1] R

)

≤ lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) . lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

)

= lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

) . lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[t−1] R

)

≤ 0.ρf (p, q) = 0.

This completes the proof. ¤

Remark 4. The condition ρg (s, t) < λf (p, q) in Theorem 4 is necessary which is
evident from the following example.

Example 2. Let f = g = exp z and p = s = 2, q = t = 1, R = 2r. Then, ρg(s, t) =
λf (p, q) = ρf (p, q) = 1. Now fm (z) = exp (z + m) , gn (z) = exp (z + n) and

(fmogn) (z) = exp (exp (z + n) + m) . Then, Tfm◦gn (r) ≥ Tfm◦gn

(
r
2

) ∼ exp( r+n
2 )

(2π3 r+n
2 )

1
2

+

O (1) (r →∞), Tfm (r) ≤ log Mfm (r) = r + m. Therefore,

lim sup
r→∞

log[p+s−q−2] Tfm◦gn

(
exp[t−1] r

)
log[p−1] Tfm◦gn

(
exp[t−1] r

)

log[p−2] Tfm

(
exp[q−1] r

)
log[q] Mgn

(
exp[t−1] R

)

= lim sup
r→∞

{log T (r, fm ◦ gn)}2

T (r, fm) log Mgn (2r)

≥ lim sup
r→∞

{
r+n

2 − 1
2 log (r + n) + O(1)

}2

(r + m) (2r + n)

=
1
8
6= 0,

which is contrary to Theorem 4.

Theorem 5. Let f be meromorphic and g be entire such that ρf (p, q) < ∞ and
ρf◦g (s, t) < ∞, where p, q, s, t are all positive integers with p > q and s > t. Also,
let 0 < λg < ∞. If fm (z) = {f (z + m) : m ∈ N} and gn (z) = {g (z + n) : n ∈ N},
then for any two positive integers a, b with a− b = 1, a > 2 and any R > r,

lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[b−1] r

)
log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[b−1] R

)
log[a−1] Tgn

(
exp[b−1] r

)

≤ ρf (p, q) .ρf◦g (s, t) .
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Proof. From (7) for any positive ε and for all sufficiently large values of r, we have

log[s−1] Tfm◦gn

(
exp[t−1] r

)
≤ log[s−1] Tf◦g

(
exp[t−1] r

)
+ O (1)

or, log[s−1] Tfm◦gn

(
exp[t−1] r

)
≤ (ρf◦g (s, t) + ε) log[t] exp[t−1] r + O (1)

(25) or, log[s−1] Tfm◦gn

(
exp[t−1] r

)
≤ (ρf◦g (s, t) + ε) log r + O (1) .

Again for all sufficiently large values of r,

log[a−1] Tgn

(
exp[b−1] r

)
≥ (λgn (a, b)− ε) log[b] exp[b−1] r

or, log[a−1] Tgn

(
exp[b−1] r

)
≥ (λg (a, b)− ε) log[b] exp[b−1] r , as λgn = λg

(26) or, log[a−1] Tgn

(
exp[b−1] r

)
≥ (λg (a, b)− ε) log r.

Combining (25) and (26) ,

log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[a−1] Tgn

(
exp[b−1] r

) ≤ (ρf◦g (s, t) + ε) log r + O (1)
(λg (a, b)− ε) log r

.

Since ε (> 0) is arbitrary, therefore,

(27) lim sup
r→∞

log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[a−1] Tgn

(
exp[b−1] r

) ≤ ρf◦g (s, t)
λg (a, b)

.

Again by Lemma 2 and the inequality Tg (r) ≤ log+ Mg (r) , we get from (7) for
all sufficiently large values of r that

log[p−1] Tfm◦gn (r) ≤ log[p−1] Tf (Mg (r)) + O (1)

or, log[p−1] Tfm◦gn

(
exp[b−1] r

)
≤ log[p−1] Tf

(
Mg

(
exp[b−1] r

))
+ O (1)

or, log[p−1] Tfm◦gn

(
exp[b−1] r

)
≤ (ρf (p, q) + ε) log[q] Mg

(
exp[b−1] r

)
+ O (1) .

In view of (5) , for any R > r the above inequality implies that

log[p−1] Tfm◦gn

(
exp[b−1] r

)

log[q] Mgn

(
exp[b−1] R

) ≤ (ρf (p, q) + ε) log[q] Mg

(
exp[b−1] r

)
+ O (1)

log[q] Mg

(
exp[b−1] R

)
+ O (1)

or,
log[p−1] Tfm◦gn

(
exp[b−1] r

)

log[q] Mgn

(
exp[b−1] R

) ≤ (ρf (p, q) + ε) log[q] Mg

(
exp[b−1] r

)
+ O (1)

log[q] Mg

(
exp[b−1] r

)
+ O (1)

or,
log[p−1] Tfm◦gn

(
exp[b−1] r

)

log[q] Mgn

(
exp[b−1] R

) ≤ (ρf (p, q) + ε) +
O (1)

log[q] Mg

(
exp[b−1] r

)
+ O (1)

.
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Since ε (> 0) is arbitrary, therefore,

(28) lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[b−1] r

)

log[q] Mgn

(
exp[b−1] R

) ≤ ρf (p, q) .

Then, from (27) and (28) we obtian

lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[b−1] r

)
. log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn

(
exp[b−1] R

)
. log[a−1] Tgn

(
exp[b−1] r

)

≤ lim sup
r→∞

log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[a−1] Tgn

(
exp[b−1] r

) . lim sup
r→∞

log[p−1] Tfm◦gn

(
exp[b−1] r

)

log[q] Mgn

(
exp[b−1] R

)

≤ ρf◦g (s, t)
λg (a, b)

.ρf (p, q) .(29)

Since λ
[2]
g = λg is non-zero finite and a − b = 1, therefore by Lemma 3 we get

λg (a, b) = 1. Hence, the proof. ¤

Corollary 4. Under the same conditions of Theorem 5 when a = 2,

lim sup
r→∞

log[p−1] Tfm◦gn (r) . log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn (R) . log Tgn (r)
≤ ρf◦g (s, t) .ρf (p, q)

λg
.

Remark 5. The condition λg > 0 in Corollary 4 is essential as we see in the
following example:

Example 3. Let f = exp z and g = z. Also, let a = 2 and p = q = s = t = 1, R = 2r.

Then, λg = 0 and ρf = ρf◦g = 1. Now fm (z) = exp (z + m) , gn (z) = z + n and
(fmogn) (z) = exp (z + n + m) .So, Tfm◦gn (r) = r+n+m

π +O (1) ,Mgn (r) ∼ r+n and
Tgn (r) = log (r + n) + O (1) . Hence,

lim sup
r→∞

log[p−1] Tfm◦gn (r) . log[s−1] Tfm◦gn

(
exp[t−1] r

)

log[q] Mgn (R) . log Tgn (r)

= lim sup
r→∞

(Tfm◦gn (r))2

log Mgn (2r) . log Tgn (r)

= lim sup
r→∞

(
r+n+m

π + O (1)
)2

log (2r + n) (log (r + n) + O (1))
= ∞,

which is contrary to Corollary 4.

Theorem 6. Let f be meromorphic and g be entire such that ρf (p, q) < ∞, where
p, q are any two positive integers with p > q. If fm (z) = {f (z + m) : m ∈ N} and
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gn (z) = {g (z + n) : n ∈ N}, then for any R > r,

(i) lim sup
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
≤ 1

and

(ii) lim sup
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
≤ ρf (p, q) .

Proof. Using Lemma 2 and the inequality Tg (r) ≤ log+ Mg (r) , we get from (7) for
any positive ε and for all sufficiently large values of r that

log[p−1] Tfm◦gn (r) ≤ log[p−1] Tf (Mg (r)) + O (1)

(30) or, log[p−1] Tfm◦gn (r) ≤ (ρf (p, q) + ε) log[q] Mg (r) + O (1)

or, log[p] Tfm◦gn (r) ≤ log[q+1] Mg (r) + O (1) .

In view of (5), this implies that

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
≤ log[q+1] Mg (r) + O (1)

log[q+1] Mg (R) + O (1)

and for any R > r,

lim sup
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
≤ 1.

Again, from (5) and (30) for any R > r we obtain

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
≤ (ρf (p, q) + ε) log[q] Mg (r) + O (1)

log[q] Mg (r) + O (1)
.

Since ε (> 0) is arbitrary, therefore,

lim sup
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
≤ ρf (p, q) .

Hence, the results. ¤

Remark 6. The condition ρf (p, q) < ∞ in Theorem 6 is necessary which is evident
from the following example:

Example 4. Let f = exp[2] z, g = exp z and p = 2, q = 1, R = 2r. Then
ρf (p, q) = ∞. Now fm (z) = exp[2] (z + m) , gn (z) = exp (z + n) and (fm ◦ gn) (z) =
exp[2] (exp (z + n) + m) .Therefore,
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log Tfm◦gn(r) ≥ log[2] Mfm◦gn(
r

2
) + O(1)

or, log Tfm◦gn(r) ≥ log[2]
(
exp[2]

(
exp

(r

2
+ n

)
+ m

))
+ O(1)

or, log Tfm◦gn(r) ≥ exp
(r

2
+ n

)
+ O(1)

or, log[2] Tfm◦gn(r) ≥
(r

2
+ n

)
+ O(1)

and

log Mgn(R) = log Mgn(2r + n) = (2r + n) + O (1)

or, log[2] Mgn(R) = log[2] Mgn(2r) = log(2r + n) + O (1) .

So,

lim sup
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
= lim sup

r→∞
log[2] Tfm◦gn (r)

log[2] Mgn(R)

≥ lim sup
r→∞

(
r
2 + n

)
+ O(1)

log(2r + n) + O (1)
= ∞

⇒ lim sup
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
= ∞

and

lim sup
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
= lim sup

r→∞
log Tfm◦gn (r)
log Mgn(R)

≥ lim sup
r→∞

exp
(

r
2 + n

)
+ O(1)

(2r + n) + O(1)
= ∞

⇒ lim sup
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
= ∞,

are contrary to Theorem 6.

In the line of Theorem 6 the following theorem can be deduced.

Theorem 7. Let f be meromorphic and g be entire such that λf (p, q) < ∞, where
p, q are any two positive integers with p > q. If fm (z) = {f (z + m) : m ∈ N} and
gn (z) = {g (z + n) : n ∈ N}, then for any R > r,

(i) lim inf
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
≤ 1
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and

(ii) lim inf
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
≤ λf (p, q) .

Remark 7. The condition λf (p, q) < ∞ in Theorem 7 is necessary which is evident
from the following example:

Example 5. Let f = exp[2] z, g = exp z and p = 2, q = 1, R = 2r. Then
λf (p, q) = ∞. Now fm (z) = exp[2] (z + m) , gn (z) = exp (z + n) and (fm ◦ gn) (z) =
exp[2] (exp (z + n) + m) . Therefore,

log Tfm◦gn(r) ≥ log[2] Mfm◦gn(
r

2
) + O(1)

or, log Tfm◦gn(r) ≥ log[2]
(
exp[2]

(
exp

(r

2
+ n

)
+ m

))
+ O(1)

or, log Tfm◦gn(r) ≥ exp
(r

2
+ n

)
+ O(1)

or, log[2] Tfm◦gn(r) ≥
(r

2
+ n

)
+ O(1)

and

log Mgn(R) = log Mgn(2r + n) = (2r + n) + O (1)

or, log[2] Mgn(R) = log[2] Mgn(2r + n) = log(2r + n) + O (1) .

So,

lim inf
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
= lim inf

r→∞
log[2] Tfm◦gn (r)

log[2] Mgn(R)

≥ lim inf
r→∞

(
r
2 + n

)
+ O(1)

log(2r + n) + O(1)

= ∞⇒ lim inf
r→∞

log[p] Tfm◦gn (r)

log[q+1] Mgn (R)
= ∞

and

lim inf
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
= lim inf

r→∞
log Tfm◦gn (r)
log Mgn(R)

≥ lim inf
r→∞

(
r
2 + n

)
+ O(1)

(2r + n) + O(1)

= ∞⇒ lim inf
r→∞

log[p−1] Tfm◦gn (r)

log[q] Mgn (R)
= ∞,

are contrary to Theorem 7.
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3. Concluding Remarks

We have used here a different approach to measure the comparative growth of
composite entire and meromorphic functions. The same technique may be applied to
investigate by using the notion of different extended and modified growth indicators.
Very few research has been done in this topic. The topic deserves further study.
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