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ON THE GROWTH OF ENTIRE
FUNCTIONS SATISFYING SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS

Ki-Ho Kwox

1. Introduction and statements of results

Let f(z) be an entire function. Then the order p(f) of f is defined

log™ T(r, f) F logtlog™ M(r, f)
r—oo  logr e logr ’
where T(r, f) is the Nevanlinna characteristic of f (see [4]), M(r, f) =
max|;|=r [f(2)| and log™* t = max(logt,0).
The purpose of this note is to study on the growth of the solutions
f # 0 of the second order linear differential equation

(1.1) f"+ A=) + B(2)f =0,

where A(z) and B(z) # 0 are entire functions.

It is well known that all solutions of (1.1) are entire functions, and
that at least one of any two linearly independent solutions of (1.1)
has infinite order if A(z) is transcendental [6, pp.167-68]. It is also
known that (i) if either p(A) < p(B), or A(z) is a polynomial and
B(z) is transcendental, or (ii) if either p(B) < p(4) < 1/2. or A(z)
1s transcendental with p(A) = 0 and B(z) is a polynomial, then every
solution f # 0 of (1.1) is of infinite order [2,5,7].

Here we give a more precise estimation of the growth of the solutions

of infinite order of (1.1) if p(A) < p(B) or p(B) < p(A) < 1/2.
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THEOREM 1. Let A(z) and B(z) be entire functions such that p(A)
< p(B) or p(B) < p(A) < 1/2. Then every solution f # 0 of (1.1)

satisfies

tyot
(1.2) lim log " log " T(r, f) > max{p(4), p( B)}.

T 00 log r

If p(A) is a positive integer and p(B) < p(A), (1.1) may have noncon-
stant solutions of finite order with p(f) = p(A4) [2, Examples 1 and 2].
Here we estimate the lower bound for the order of finite order solutions

of (1.1}).

THEOREM 2. Let A(z) and B(z) be entire functions satisfying p(B)
< p(A). Then every solution f # 0 of finite order of (1.1) satisfies
p(f) = p(A).

REMARK. If p(A) = p(B), the conclusion of Theorem 2 is in general
false. Indeed, f(z) = z solves f" + ze*f' —e*f = 0.

If p(A) is not a positive integer with p(A) > 1/2 and p(B) < p(A).
the possibility of solutions of finite order of (1.1) remains open. But G.
Gunderson proved that if the growth of B(z) dominates the growth of
A(z) in certain angular sector, then every solution f # 0 of (1.1) (with
p(B) < p(A)) has infinite order.

THEOREM A[2]. Let A(z) and B(z) be entire functions such that for
real constants a, 3, 6,, 6,, where o > 0,3 > 0 and 6, < 8. we have

(1.3) |A(z)] < exp{(0(1))|2]*}
and
(1.4) |B(2)] > exp{(1 + o(1))al2|*}

as z — oo in ¢, < argz < ;. Then every solution f # 0 of (1.1) has
infinte order.

For E C [0,00), the upper and the lower densities of E are defined
by

densE = lim w

T—0oC T
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and
densE = lim Mw
T

T—00

where m(F') is the linear measure of a set F.
We generalize and improve Theorem A in the following theorem, in
which the angular sector 6, < arg z < 6, is replaced by a smaller set E.

THEOREM 3. Let E be a set of complex numbers satisfying dens{|z| :
z € E} > 0, and let A(z) and B(z) be entire functions which satisfy
(1.3) and (1.4) respectively as z — oo in E. Ther every solution f # 0
of (1.1) is of infinite order with

(1.5) Tim log™ log™ T(r. f)

r—oo logr

> 8.

REMARK. Let A(z) = ¢7% and B(2) = —(e%* + ¢* + 1), then A(z)
and B(z) satisfy (1.3) and (1.4) with @ = 2 and 3 = 1 respectively on
the positve real axis, and (1.1) has the solution f(z) = exp(e®). Hence
the inequality of (1.5) is sharp.

If 0 < p(B) < 1/2, Theorem 3 is modified as the following theorem.

THEOREM 4. Let A(z) and B(z) be entire functions where 0 <
p(B) < 1/2, and let there exist a real constant p < p(B) and a set
E, C [0,00) with densE, = 1 such that for all r ¢ E, we have

(1.6) min [A(z)] < exp(r?).

|2 |=r

Then every solution f # 0 of (1.1) is of infinite order with

+ o+ ~
(1.7) T g log" T(rf) o py

r—o0 log r
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REMARK. Let P(z) be a nonconstant polynomial and let h(z) be an
entire function satisfying p(h) < deg(P). Let B(z) be an entire function
with 0 < p(B) < 1/2. Then, by Theorem 4, every solution f # 0 of

(1.8) f"+heP P +Bf =0
is of infinite order with (1.7) since

min |h(z)e” | 5 0

|z|=r

as 7 — oo. Actually, if B(z) is a transcendental entire function with
p(B) # deg(P), then every solution f # 0 of (1.8) kas infinite order [2,
p.419].

2. Proofs of theorems

Our proofs depend mainly on the following lemmas.

LEMMA 1 [3]. Let f(z) be a nontrivial entire function, and let o > 1
and € > O be given constants. Then there exist a constant ¢ > 0 and a
set E; C [0, 00) having finite linear measure such that for all = satisfying
|z| =r ¢ E\ we have

< e[T(ar, fr<log T(ar, f)]*, ke N.

If“”(z)
(z) |~

f

LeEMMA 2 [1]. Let f(z) be an entire function of order p where 0 <
p < 1/2, and let ¢ > 0 be a given constant. Then there exists a
set By C [0,00) with densE; > 1 — 2p such that for all z satisfying
|z| =r € Ej, we have

|f(2)| 2 exp(r™°).
In addition we need the following elementary lemmas.
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LEMMA 3. Let f(z) be a nonconstant entire function. Then there
exists a real number R such that for all r > R there exists z, with
|z,| = r satisfying

<r.

* flzr)
f’(zr)

Proof. We assume first that f has a zero inside the circle |z| = Ry
for some real number R;. Suppose that r > R, and that f has no zero
on the circle |z| = r. Then from the integration of f'/f around the
circle |z| = r, it follows from the residue theorem that there exists a
point z, such that |z,.| =r and |f'(z.)|/|f(z-)] > 1/r.

Next we assume that f has no zero in the complex plane. Then
f = €9 for some nonconstant entire function ¢g(z). Hence f'/f = ¢’ is
a nonzero entire function. If ¢’ is a constant, the result follows imme-
diately. Otherwise, there is a real number R, such that M(r,¢') > 1
for all r > R;. Hence for all r > R, there exists a point z, such that
22 = r and |f(z)/ f(20)] 2 1.

Thus the proof of Lemma 3 is complete.

LEMMA 4. Let f(z) be a nonconstant entire function of finite order.
Then for any e > 0, there exists a set E C [0,0c) with densE = 1 such
that

M(r,f) 2 exp(r# =)

forallr € E.
Proof. Let o = p(f) — € and let 3 = p(f) — €/2. Then there is a

sequence {r,} of real numbers for which we have (r,)/? > n® and
log* M(rp, ) > (ry)”.

Therefore
logt M(rn, f) > (nrp)®

for all n éN. Setting E = U2 ,[rn,nry], we have densE =1 and
log™ M(r, f) > r®
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for all r € E, since M(r, f) is increasing. Hence the proof of Lemma 4
1s complete.

Proof of Theorem 1. We first suppose that p(A) < p(B). and that «
and 3 are real numbers satifying p(A4) < o < 8 < p(B). If f(#£0) is a
solution of (1.1), then it follows that

(2.1) 1B| < W

14 [

By Lemma 1, there is a set E; C [0,00) with a finite linear measure
such that for all z satisfying |z| = r ¢ E| we have

(2.2) <r[T2r, )’ k=1.2

()
e

Also, by Lemma 4, there is a set E; C [0, 00) with densE; = 1 such
that for all r € F, we have

(2.3) exp(r?) < M(r, B).

Hence by (2.1), (2.2) and (2.3), we get aset E C [0, co) with densE =1
such that for all r € E we have

exp(r”) < 2r exp(r®)[T(2r, f)]*.

Thus for all r € E we have

exp{(1 - o(1))r} < [T(2r, f)]*

as r — oc. Therefore

log™ log™® T(r,
lim og log” T(r.f) > 3.
r—oc logr

Since 3 is arbitrary, we get the result of the theoren:.
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Now suppose that p(B) < (A) < 1/2, and let « and 3 are real
numbers satisfying p(B) < f < a < p(A). If f{# 0) is a solution of
(1.1), it follows that

fll

2. Al <
(2.4) |A] < F

By Lemma 1, there is a set E3 C [0,00) with a finite linear measure
such that for all z satisfying |z| = r ¢ E3 we have

f'(z)
f1(z)

(2.5) < r[T(2r, )%

Also, by Lemma 2, there is a set E4 C [0,00) with densE; > 0 such
that for all z satisfying |z| = r € E4 we have

(2.6) exp(r®) < |A(z)|.

Hence by (2.4), (2.5) and (2.6), we get a set E5 C [0, 0c) with densE5 >
0 such that for all z satisfying |z| = r € E5 we have

£(z)
@I

(2.7) exp(r®) < r[T(2r, f)]* + exp(r?)

&H

Now, by Lemma 3, there exists a number R > 0 such that forall r > R
there exists a z, with |z,| = r satisfying

(2.8)

Therefore by (2.7) and (2.8) we get a set E C [0,00) with densE > 0
such that for all r € E we have

r[T(2r, f')]2 + 7 expl r?)
2r exp(r?)[T(2r, f")]*.

exp(r®)
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Thus

+ + 7y, '
T log™ log™ T(r. f') > a
r—00 log r

Since a is arbitrary, the result of the theorem follows from the fact that
I(r,f") ~T(r,f) as r — oo (see [4, p.58)).
The proof of Theorem 1 is now complete.

Proof of Theorem 2. Suppose thatf # 0 is a solution of (1.1) with
p(f) < cc. It follows from (1.1) that

f ! f
-+ B I
Hence from Nevanlinna’s fundamental results of meromorphic fune-
tions[4], we have

(2.9) m(r,A) <m(r,B) + m(r, %) + O(log r)

as 7 — oo. Here the notation m(r, k) for a meromorphic function 4 is

defined by
27
m(r, h) = —1—/ log™ |h(re')|de,
2r fo
which is equal to T'(r, k) if k is entire. It follows from (2.9) that
T(r,A) - T(r, B) - O(logr) < 2T(r. f)

as r — oo, since m(r, %) <2T(r, f)+0(1) as r — oc. Hence the result
of the theorem follows from the fact that p(B) < p(A).

Proof of Theorem 3. Suppose that f # 0 is a solution of (1.1). Then
from (2.1) and (2.2) there is a set E; C [0,0c) with a finite linear
measure such that for all = satisfying |2| ¢ E; we have

(2.10) 1B(2)| < [2([T(2]2]. /{1 + |A(2)[}

Also, by the hypothsis of the theorem, there exists a set E, with
dens{[z) z € E3} > 0 such that for all z satisfying z € E; we have

|4(z)] < exp{(o(1))]2]},
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(2.11)
1B(2)| > exp{(1 + o(1))alz|"}

as z — oo. Hence it follows from (2.10), (2.11) that for all z satisfying
z € E; and |z| ¢ E; we have

exp{(1 + o(1))alz]’} < [z|[1 + exp{o(1)|z|"}][T(2]=], f)]°

as z — oc. Thus there exists a set E C [0,00) with a positive upper
density such that

exp{(1+ o(1))alz/’} < [T(2r, /))®

as r — oo in E. Therefore

i log+ log+ T(r, f)
lim

r—00 log r

2 p.

This proves the theorem.

Proof of Theorem 4. Let p < p(B) and let f # 0 be a solution of
(1.1). Suppose that p < 3 < p(B) and that there is a set E, C [0, 00)
of lower density 1 satisfying (1.6). Set

Ey={z:|z|=r € E, and |A(z)| = min |A(z)|}

|z|=r
Then dens{|z|: z € E1} =1 and
1A(2)] < exp(r?)
for all z € E|. Also, from Lemma 2, there is a set £y C [0,0c) of
positive upper density such that for all z satisfying |z| € E> we have
|B(z)| 2 exp(r?).

Now let E = {z € E| : |z| € E3}. Then, with the set E and the number
B, A(z) and B(z) satisfy the hypothesis of Theorem 3 respectively.
Hence we conclude by Theorem 3 that

___logtlog™ T(r, f)
lim

r—o0 log r

> 3.

Thus the result of the theorem follows since 3 is arbitrary.
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