• Title/Summary/Keyword: Neutron spectra

Search Result 94, Processing Time 0.021 seconds

A Study on Transmuted Impurity Atoms Formed in Neutron-Irradiated ZnO Thin Films (중성자 조사한 ZnO 박막에 생성된 핵전환 불순물들에 대한 연구)

  • Kim, Sang-Sik;Seon, Gyu-Tae;Park, Gwang-Su;Im, Gi-Ju;Seong, Man-Yeong;Lee, Bu-Hyeong;Jo, Un-Gap;Han, Hyeon-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.298-304
    • /
    • 2002
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. The ZnO films consist of eight constituent (Zn and O) isotropes, of which four are transmutable by neutron-irradiation; $^{64}$ , $^{68}$ Zn, $^{70}$ Zn and $^{18}$ O were expected to transmute into $^{65}$ Cu, $^{69}$ Ga, $^{71}$ Ga, and $^{19}$ F, respectively. The concentrations of these transmuted atoms were estimated in this study by considering natural abundance, neutron fluence and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of the ZnO thin films, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation confirmed the existence of $^{65}$ Cu in the ZnO, but it could not do the formation of the other two. In this paper, the emission mechanism of Cu impurities is described and the reason for the absence of the Ga- or F-associated PL peaks is discussed as well.

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

Quantitative Evaluation of Radiation Dose Rates for Depleted Uranium in PRIDE Facility

  • Cho, Il Je;Sim, Jee Hyung;Kim, Yong Soo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • Background: Radiation dose rates in PRIDE facility is evaluated quantitatively for assessing radiation safety of workers because of large amounts of depleted uranium being handled in PRIDE facility. Even if direct radiation from depleted uranium is very low and will not expose a worker to significant amounts of external radiation. Materials and Methods: ORIGEN-ARP code was used for calculating the neutron and gamma source term being generated from depleted uranium (DU), and the MCNP5 code was used for calculating the neutron and gamma fluxes and dose rates. Results and Discussion: The neutron and gamma fluxes and dose rates due to DU on spherical surface of 30 cm radius were calculated with the variation of DU mass and density. In this calculation, an imaginary case in which DU density is zero was added to check the self-shielding effect of DU. In this case, the DU sphere was modeled as a point. In case of DU mixed with molten salt of 50-250 g, the neutron and gamma fluxes were calculated respectively. It was found that the molten salt contents in DU had little effect on the neutron and the gamma fluxes. The neutron and the gamma fluxes, under the respective conditions of 1 and 5 kg mass of DU, and 5 and $19.1g{\cdot}cm^{-3}$ density of DU, were calculated with the molten salt (LiCl+KCl) of 50 g fixed, and compared with the source term. As the results, similar tendency was found in neutron and gamma fluxes with the variation of DU mass and density when compared with source spectra, except their magnitudes. Conclusion: In the case of the DU mass over 5 kg, the dose rate was shown to be higher than the environmental dose rate. From these results, it is concluded that if a worker would do an experiment with DU having over 5 kg of mass, the worker should be careful in order not to be exposed to the radiation.

In-line (α,n) source sampling methodology for monte carlo radiation transport simulations

  • Griesheimer, David P.;Pavlou, Andrew T.;Thompson, Jason T.;Holmes, Jesse C.;Zerkle, Michael L.;Caro, Edmund;Joo, Hansem
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1199-1210
    • /
    • 2017
  • A new in-line method for sampling neutrons emitted in (${\alpha}$,n) reactions based on alpha particle source information has been developed for continuous-energy Monte Carlo simulations. The new method uses a continuous-slowing-down model coupled with (${\alpha}$,n) cross section data to precompute the expected neutron yield over the alpha particle lifetime. This eliminates the complexity and computational cost associated with explicit charged particle transport. When combined with an integrated alpha particle decay source sampling capability, the proposed method provides an efficient and accurate method for sampling (${\alpha}$,n) neutrons based solely on nuclide inventories in the problem, with no additional user input required. Results from several example calculations show that the proposed method reproduces the (${\alpha}$,n) neutron yields and energy spectra from reference experiments and calculations.

Transient analysis of a subcritical reactor core with a MOX-Fuel using the birth-and-death model

  • Korbu, Tamara;Kuzmin, Andrei;Rudak, Eduard;Kravchenko, Maksim
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1731-1735
    • /
    • 2021
  • The operation of the nuclear reactor requires accurate and fast methods and techniques for analysing its kinetics. These techniques become even more important when the MOX-fuel is used due to the lower value of delayed neutron fraction 𝛽 for 239Pu. Based on a Birth-and-Death process review, the mathematical model of thermal reactor core has been proposed different from existing ones. The analytical method for thermal point-reactor parameters evaluation is described within this work. The proposed method is applied for analysis of the unsteady transient processes taking place in a thermal reactor at its start-up or shutdown power change, as well as during small accidental power variation from the rated value. Theoretical determination of MASURCA reactor core reactivity through the analysis of experimental data on neutron time spectra was made.

Calculation of the fission products for neutron-induced fission of 235U

  • Changqi Liu;Kai Tao;Liming Huang;Dejun E;Xiaohou Bai;Zhanwen Ma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1895-1901
    • /
    • 2024
  • The fission model, G4ParaFissionModel, was enhanced in this study, mainly focusing on refining the energy dependence of the peak-to-valley ratio in the mass distribution and the energy dependence of the average total kinetic energy (TKE). The enhanced model was employed to investigate the characteristics of fission products from 235U(n, f) reaction. The calculated results, including fission yield, TKE distribution, prompt fission neutron and gamma spectra, were compared with both evaluated and experimental data. The comparison shows that these physical observables related nuclear data, which are of importance for developments of the nuclear power and physics, can be reasonably well reproduced.

Effect of Neutron irradiation in $Fe_{81}B_{13.5}_Si{3.5}C_2$Amorphous Ribbon (비정질 $Fe_{81}B_{13.5}_Si{3.5}C_2$ 리본의 중성자 조사에 따른 자기적 특성변화)

  • 김효철;홍권표;김철기;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.49-52
    • /
    • 2000
  • The changes of magnetic properties in neutron irradiated F $e_{81}$ $B_{13.5}$S $i_{3.5}$ $C_2$ amorphous ribbon were studied by X-ray diffraction, hysteresis loop, temperature dependence of magnetization and complex permeability. The fluences of thermal ( $n_{th}$) and fast ( $n_{f}$) neutron were 6.95$\times$10$^{18}$ $n_{th}$ c $m^{-2}$ and 4.56$\times$10$^{16}$ $n_{f}$c $m^{-2}$ , respectively. The changes of XRD Profiles were not observable at the neutron irradiated sample. The complex permeability spectra showed that the permeability from domain wall motion decreased due to the increase of pinning force against domain motion by the neutron irradiation, and the relaxation frequency of rotational magnetization moved to higher frequency region. The measurement of hysteresis loop showed the increase of magnetic softness, related to rotational magnetization, but saturation magnetization was decreased in neutron irradiation sample. The Curie temperature was decreased in the neutron irradiated sample.e.e.e.

  • PDF

Fast Neutron Dosimetry with Two Threshold Detectors in Criticality Accidents of Nuclear Reactors

  • Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-95
    • /
    • 1970
  • An attempt has been made to do interpretation of the fast neutron dose with two threshold detectors incorporated with the Harwell criticality locket. This method is based on the assumption that the spectral distribution of fission neutrons in criticality accidents may be governed by one spectral parameter. The surface-absorbed dose for a unit fission neutron fluence seems to be insensitive to spectral shifts of the fission neutron spectrum. The average cross-sections for the activation detectors, however, are considerably changed with the neutron spectral shape, which may lead to a large error in calculating the dose from the reaction rate if one uses a fixed value for the average cross sections regardless of the neutron spectral distribution. Besides, the doses calculated from three representative formulae for fission neutron spectra have been compared : these formulae are Watt, Cranberg at al. and Maxwellian forms. The results obtained front the Maxwellian formula show a departure from the Watt and Cranberg's, both being similarly close.

  • PDF

A field determination method of D-T neutron source yields based on oxygen prompt gamma rays

  • Xiongjie Zhang;Bin Tang ;Geng Nian;Haitao Wang ;Lijiao Zhang ;Yan Zhang ;Rui Chen ;Zhifeng Liu ;Jinhui Qu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2572-2577
    • /
    • 2023
  • A field determination method for small D-T neutron source yield based on the oxygen prompt gamma rays was established. A neutron-gamma transport equation of the determination device was developed. Two yield field determination devices with a thickness of 20 mm and 50 mm were made. The count rates of the oxygen prompt gamma rays were calculated using three energy spectra processing approaches, which were the characteristic peak of 6.13 MeV, the overlapping peak of 6.92 MeV and 7.12 MeV, and the total energy area. The R-square of the calibration curve is better than 94% and the maximum error of the yield test is 5.21%, demonstrating that it is feasible to measure the yield of D-T neutron source by oxygen prompt gamma rays. Additionally, the results meet the requirements for field determination of the conventional D-T neutron source yield.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.