DOI QR코드

DOI QR Code

Calculation of the fission products for neutron-induced fission of 235U

  • Changqi Liu (Institute of Advanced Science Facilities) ;
  • Kai Tao (Institute of Advanced Science Facilities) ;
  • Liming Huang (Institute of Advanced Science Facilities) ;
  • Dejun E (Institute of Advanced Science Facilities) ;
  • Xiaohou Bai (School of Nuclear Science and Technology, Lanzhou University) ;
  • Zhanwen Ma (School of Nuclear Science and Technology, Lanzhou University)
  • Received : 2023.08.11
  • Accepted : 2023.12.26
  • Published : 2024.05.25

Abstract

The fission model, G4ParaFissionModel, was enhanced in this study, mainly focusing on refining the energy dependence of the peak-to-valley ratio in the mass distribution and the energy dependence of the average total kinetic energy (TKE). The enhanced model was employed to investigate the characteristics of fission products from 235U(n, f) reaction. The calculated results, including fission yield, TKE distribution, prompt fission neutron and gamma spectra, were compared with both evaluated and experimental data. The comparison shows that these physical observables related nuclear data, which are of importance for developments of the nuclear power and physics, can be reasonably well reproduced.

Keywords

References

  1. D. Higgins, U. Greife, F. Tovesson, et al., Fission fragment mass yields and total kinetic energy release in neutron-induced fission of 233U from thermal energies to 40 MeV, Phys. Rev. C 101 (2020) 014601. 
  2. A. Al-Adili, F.-J. Hambsch, S. Pomp, et al., Fragment mass-, kinetic energy- and angular distributions for 234U(n f) at incident neutron energies from En = 0.2 to 5.0 MeV, Phys. Rev. C 93 (2016) 34603. 
  3. J. King, R. Yanez, W. Loveland, et al., The total kinetic energy release in the fast neutron-induced fission of 232Th, Eur. Phys. J. A 53 (2017) 238. 
  4. D.L. Duke, F. Tovesson, A.B. Laptev, et al., Fission-fragment properties in 238U(nf) between 1 and 30 MeV, Phys. Rev. C 94 (2016) 054604. 
  5. O. Litaize, O. Serot, D. Regnier, et al., New features of the FIFRELIN code for the investigation of fission fragments characteristics, Phys. Procedia 31 (2012) 51-58. 
  6. O. Litaize, O. Serot, D. Regnier, et al., Investigation of n+238U fission observables, Nucl. Data Sheets 118 (2014) 216-219. 
  7. B. Becker, P. Talou, T. Kawano, et al., Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: application to nth + 235U, nth + 239Pu, and 252Cf (sf), Phys. Rev. C 87 (2013) 014617. 
  8. Wei Zheng, Zeen Yao, Changlin Lan, et al., Monte Carlo simulation of fission yields, kinetic energy, fission neutron spectrum and decay c-ray spectrum for 232Th(nf) reaction induced by 3H(d,n) 4He neutron source, J. Radioanal. Nucl. Chem. 305 (2015) 455-462. 
  9. C.Q. Liu, Z. Wei, C. Han, et al., Monte Carlo simulation of fast neutron-induced fission of 237Np, Chin. Phys. C 43 (2019) 064001. 
  10. D.H. Wright, Geant4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506 (2002) 250-303. 
  11. J.P. Lestone, Energy dependence of plutonium fission-product yields, Nucl. Data Sheets 112 (2011) 3120-3134. 
  12. J.P. Lestone, T.T. Strother, et al., Energy dependence of plutonium and uranium average fragment total kinetic energies, Nucl. Data Sheets 118 (2014) 208-210. 
  13. X.J. Sun, C.G. Yu, N. Wang, et al., Pre-neutron emission mass distributions for low-energy neutron-induced actinide fission, Phys. Rev. C 85 (2012) 014613. 
  14. X.J. Sun, C.H. Pan, C.G. Yu, et al., Pre-neutron-emission mass distributions for reaction 232Th(nf) up to 60 MeV, Commun. Theor. Phys. 62 (2014) 711-716. 
  15. K.H. Schmidt, B. Jurado, C. Amouroux, et al., General description of fission observables: GEF model code, Nucl. Data Sheets 131 (2016) 107-221. 
  16. R. Yanez, L. Yao, J. King, et al., Excitation energy dependence of the total kinetic energy release in 235U(nf), Phys. Rev. C 89 (2014) 051604 (R). 
  17. D.G. Madland, et al., Total prompt energy release in the neutron-induced fission of 235U, 238U, and 239Pu, Nucl. Phys. 772 (2006) 113-137. 
  18. J.W. Meadows, C. Budtz-Jorgensen, The Fission-Fragment Angular Distributions and Total Kinetic Energies for 235U(nf) from 0.18 to 8.34 MeV, Argonne National Laboratory, January 1982. Technical Report ANL/NDM-64. 
  19. R. Yanez, L. Yao, J. King, et al., Excitation energy dependence of the total kinetic energy release in 235U(nf), Phys. Rev. C 89 (2014) 051604. 
  20. R. Yanez, J. King, J.S. Barrett, et al., Total kinetic energy release in the fast neutron-induced fission of 235U, Eur. Phys. J. A. 970 (2018) 65-77. 
  21. Huan-Qiao Zhang, Recommendation of nu value of U-235, Inst, Atom. Energy 12 (1978) 76041. 
  22. Yu A. Khokhlov, I.A. Ivanin, V.I. In'Kov, et al., Measurements results of average neutron multiplicity from neutron induced fission of actinides in 0.5-10MeV energy range, Bolletino della Societa Italiana di Fisica 59 (1997) 667. 
  23. J. Frehaut, A. Bertin, R. Bois, et al., Measurement of Prompt Nu-Bar and Prompt E-Gamma in the Fission of Th-232,U-235, and Np-237 Induced by Neutrons in the Energy Range between 1 and 15 MeV. Conf. On Nucl. Data for Sci. and Technol, Antwerp, 1982, p. 78, 1982 Main reference. 
  24. J.M. Hu, Nuclear Fission Physics, Beijing University, Beijing, 1999. 
  25. V.V. Verbinski, H. Weber, R.E. Sund, Prompt gamma rays from 235U(n,f) , 239Pu (n,f), and spontaneous fission of 252Cf, Phys. Rev. C 7 (3) (1973) 1173. 
  26. A. Oberstedt, M. Lebois, S. Oberstedt, et al., Prompt γ-ray characteristics from 235U(n,f) at En = 1.7 MeV, Eur. Phys. J. A. 56 (2020) 236. 
  27. M. Lebois, J.N. Wilson, P. Halipre, et al., Comparative measurement of prompt fission gamma-ray emission from fast-neutron-induced fission of U-235 and U-238, Phys. Rev. C 92 (2015) 034618.