• 제목/요약/키워드: Neutron kinetics

검색결과 50건 처리시간 0.019초

원자로 동특성 방정식의 수치해석에 관한 연구 (Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • 제15권2호
    • /
    • pp.98-109
    • /
    • 1983
  • 2차원 다군 확산 이론에 의한 원자로 동특성 방정식의 해를 구하기 위해서 two-step alternating direction explicit method를 도입하였다. Alternating direction implicit method의 특별한 경우로써 이 방법의 정확도 및 안전성을 해석하였다. 이 방법의 타당성을 시험하기 위해서 TWIGL 전산조직에 사용한 implicit difference method와 비교하여 두 방법의 결과가 일치함을 알았다. 이 방법을 이용하여 가압경수형 원자로(PWR)의 제어봉 삽입시의 중성자 신속의 시간변화와, CANDU-PHW 원자로의 가상된 냉각재상실 사고시의 중성자 신속의 시간변화를 계산하여 이들 원자로의 제어능력을 확인하였다.

  • PDF

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A.;Datkhile, G.;Kadam, P.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.688-694
    • /
    • 2021
  • The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.

Inverse method to obtain reactivity in nuclear reactors with P1 point reactor kinetics model using matrix formulation

  • Suescun-Diaz, Daniel;Espinosa-Paredes, Gilberto;Escobar, Freddy Humberto
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.414-422
    • /
    • 2021
  • The aim of this work considers a second order point reactor kinetics model based on the P1 approximation of transport theory, called in this work as P1 point reactor model. The P1 point reactor model implicitly considers the time derivative of the neutron source which has not been thus considered previously. The inverse method to calculate the reactivity in nuclear reactors -chosen because its high accuracy- Matrix Formulation. The numerical results shown that the Matrix Formulation for the reactivity estimation constitutes a method with insignificant calculation errors.

Approximate Method in Estimating Sensitivity Responses to Variations in Delayed Neutron Energy Spectra

  • J. Yoo;H. S. Shin;T. Y. Song;Park, W. S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.85-90
    • /
    • 1997
  • Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of our approximation, these approximate results are compared with exact results obtained from our previous numerical study.

  • PDF

A Three-Dimensional Operational Transient Simulation of the CANDU Core with Typical Reactor Regulating System

  • Yeom, Choong-Sub;Kim, Hyun-Dae;Park, Kyung-Seok;Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.500-505
    • /
    • 1995
  • This paper describes the results of simulation of a CANDU operational transient problem (re-startup after short shutdown) using the Coupled Reactor Kinetics(CRKIN) code developed previously with CANDU Reactor Regulating System(RRS) logic. The performance in the simulation is focused on investigating the behaviours of neutron power and regulating devices in accordance with the changes of xenon concentration following the operation of the RRS.

  • PDF

GaMnN 박막의 중성자 조사 및 열처리 효과 (Effects of Neutron Irradiation and Heat Treatment for GaMnN)

  • 이계진;강희수;김정애;우부성;김경현;김도진;김봉구;강영환;유승호;김창균;김창수;김효진;임영언
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.409-414
    • /
    • 2003
  • The room-temperature operating semiconductor GaMnN is known to be improved in its magnetic property when a highly conductive precipitate $Mn_3$GaN exists. Therefore, it is useful to investigate the behavior of the precipitate through heat treatments for further improvement of its magnetic property. Furthermore, neutron irradiation may further influence the behavior of the precipitates, and consequently, their effects on the magnetization. With the heat treatment, $Mn_3$GaN decomposed and a new phase of $Mn_3$Ga has generated. The kinetics was accelerated by neutron irradiation, which might generate defects that can help the decomposition of N and/or the formation of $Mn_3$Ga. The increase and decrease of the magnetization of the heat-treated GaMnN thin films were explained consistently by the behavior of the precipitates.

LYGBO 단결정의 열형광 전자포획준위 인자 (Thermoluminescence Kinetics of LYGBO Crystal)

  • 김성환
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-23
    • /
    • 2023
  • 본 연구에서는 중성자 반응단면적이 높은 Li, Gd 및 B을 모체로 구성된 중성자 검출용 Li6Y0.5Gd0.5(BO3)3 (LY0.5G0.5BO) 섬광체의 전자포획준위에 대하여 조사하였다. LY0.5G0.5BO 섬광 단결정에 대하여 열형광곡선을 측정하고 이를 피크형상법, 초기상승법 및 기계학습 알고리즘을 이용하여 분석하여 전자포획준위의 물리적인 인자를 평가하였다. LYGBO 섬광 단결정의 열형광곡선은 단일 피크로 이루어져 있으며, 이 피크를 분석한 결과 전자포획준위의 활성화에너지, 발광차수 및 주파수인자는 각각 0.61 eV, 1.1 및 1.7×107 s-1이었다. 아울러 기계학습을 이용한 섬광체의 열형광 해석의 가능성을 확인하였다.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • 제44권2호
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.