• Title/Summary/Keyword: Neutron Scattering

Search Result 131, Processing Time 0.035 seconds

Comparison Study of Experimental Neutron Room Scattering Corrections with Theoretical Corrections in RCL's Calibration Facility at KAERI (한국원자력연구소 중성자교정실에 대한 중성자산란보정인자 결정연구)

  • Yoon, Suk-Chul;Chang, Si-Young;Kim, Jong-Soo;Kim, Jang-Lyul;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.29-33
    • /
    • 1997
  • Neutron room scattering corrections that should be made when neutron detectors are calibrated with a $D_2O$ moderated $^{252}Cf$ neutron source in the center of a calibration room are considered. Such room scattering corrections are dependent on specific neutron source type, detector type, calibration distance, and calibration room configuration. Room scattering corrections for the responses of a thermoluminescence dosimeter and two different types of spherical detectors to neutron source in the Radiation Calibration Laboratory(RCL) neutron calibration facility at the Korea Atomic Energy Research Institute(KAERI) were experimentally determined and are presented. The measured room scattering results are then compared with theoretical results calculated by predicting room scattering effects in terms of parameters related to the specific configuration. Agreement between measured and calculated scattering correction is generally about 10% for three kinds of detectors in the calibration facility.

  • PDF

Calculation of thermal neutron scattering data of MgF2 and its effect on beam shaping assembly for BNCT

  • Jiaqi Hu;Zhaopeng Qiao;Lunhe Fan;Yongqiang Tang;Liangzhi Cao;Tiejun Zu;Qingming He;Zhifeng Li;Sheng Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1280-1286
    • /
    • 2023
  • MgF2 as a moderator material has been extensively used in the beam shaping assembly (BSA) that plays an important role in the boron neutron capture therapy (BNCT). Regarded as important for applications, the thermal neutron scattering data of MgF2 were calculated, based on the phonon expansion model. The structural properties of MgF2 were researched by the VASP code based on the ab-initio methods. The PHONOPY code was employed to calculate the phonon density of states. Furthermore, the NJOY code was used to calculate the thermal neutron scattering data of MgF2. The calculated inelastic cross sections plus absorption cross sections are in agreement with the available experimental data. The neutron transport in the BSA has been simulated by using a hybrid Monte-Carlo-Deterministic code NECP-MCX. The results indicated that compared with the calculation of the free gas model, the thermal neutron flux and epithermal neutron flux at the BSA exit port calculated by using the thermal neutron scattering data of MgF2 were reduced by 27.7% and 8.2%, respectively.

Quantitative Analysis of ″Polymer-Balls″ in Aqueous Solutions by Small-Angle Neutron Scattering

  • Shibayama, Mitsuhiro;Okabe, Satoshi;Nagao, Michihiro;Sugihara, Shinji;Aoshima, Sadahito;Harada, Tamotsu;Matsuoka, Hideki
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.311-317
    • /
    • 2002
  • The quantitative analysis of polymer micelles consisting of amphiphilic block copolymers was carried out by small-angle neutron scattering (SANS). The block copolymers, made of poly(2-ethoxyethyl vinyl ether-b-2-hydroxyethyl vinyl ether)(poly(EOVE-b-HOVE)), exhibited a sharp morphological transition from a homogeneous solution to a micelle structure with increasing temperature. This transition is accompanied by a formation of spherical domains of poly(EOVE) with a radius around 200 $\AA$. The variations of the size and its distribution of the domains were investigated as a function of polymer concentration and temperature. The validity of SANS analysis, including the wavelength- and incident-beam-smearing effects of the SANS instrument, was examined with a pre-calibrated polystyrene latex.

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.

MCNPX Simulation of Scattered Neutron Distribution in Experimental Room for the Neutron Reference Field of Monoenergetic Neutron below 2.5 MeV (2.5 MeV 이하 단색 중성자 표준장에 대한 중성자 실험실내의 산란 중성자 분포 전산모사)

  • Park, Jung-Hun;Kim, Gi-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.59-63
    • /
    • 2011
  • It is important to reduce indirect scattered neutron beside direct neutron of chosen energy for designing a neutron-reference-field laboratory with neutron produced from a nuclear reaction by a accelerator. Therefore MCNPX simulation was performed with various conditions for obtaining such condition. At first in the original laboratory condition we calculated the direct neutron flux which was inserted in chamber (virtual chamber composed of air) of 0 degree (proton moving direction) for neutron flux measurement and the scattered neutron flux which is inserted in the chamber after scattering wall or bottom. In the result, the scattered neutron which was inserted after scattering bottom is more than that which was inserted after scattering the others. Therefore MCNPX simulation was again performed with removing the concrete bottom and with removing the concrete bottom and digging 1 m in the ground. In the result of removing concrete bottom and digging 1 m in the ground, scattered neutron which was inserted after scattering bottom became less than that which was inserted after scattering the others.

NEUTRON SCATTERING INVESTIGATIONS OF PROTON DYNAMICS OF WATER AND HYDROXYL SPECIES IN CONFINED GEOMETRIES

  • Chen, S.H.;Loong, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.201-210
    • /
    • 2006
  • This article presents a brief overview of an important area of neutron scattering: the general principles and techniques of elastic, quasielastic and inelastic scattering from a system composed predominately of incoherent scatterers. The methodology is then applied to the study of water, specifically when it is confined in nanometer-scale environments. The confined water exhibits uniquely anomalous properties in the supercooled state. It also nourishes biological functions, and supports essential chemical reactions in living systems. We focus on recent investigations of water encapsulated in nanoporous silica and carbon nanotubes, hydrated water in proteins and water or hydroxyl species incorporated in nanostructured minerals. Through these scientific examples, we demonstrate the advantages derived from the high sensitivity of incoherent neutron spectroscopy to hydrogen atom motions and hydrogen-bond dynamics, aided by rigorous data interpretation method using molecular dynamics simulations or theoretical modelling. This enables us to probe the inter-/intramolecular vibrations and relaxation/diffusion processes of water molecules in a complex environment.

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

NEUTRON ELASTIC AND NON-ELASTIC SCATTERING STUDIES IN TENS OF MeV REGION

  • Baba Mamoru;Ibaraki Masanobu;Miura Takako;Aoki Takao;Nakashima Hiroshi;Tanaka Shin-ichiro Meigo Susumu
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.265-270
    • /
    • 2001
  • Experimental data have been obtained on the neutron elastic scattering cross sections for 55, 65 and 75 MeV neutrons, and non-elastic scattering cross sections for 40 to 80 MeV neutrons using the $^7Li(p,n)$ neutron source at TIARA of Japan Atomic Energy Research Institute and the TOF method. Data were obtained for C, Si, Fe, Zr, and Pb of natural elements. Elastic scattering data were obtained for 25 laboratory angles between 2.6 and 53.0 that clarified the angular distributions and angle integrated values. The data obtained were compared favorably with recent LA150 data library.

  • PDF