NEUTRON SCATTERING INVESTIGATIONS OF PROTON DYNAMICS OF WATER AND HYDROXYL SPECIES IN CONFINED GEOMETRIES

  • Chen, S.H. (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Loong, C.K. (Intense Pulsed Neutron Source Division, Argonne National Laboratory)
  • Published : 2006.04.01

Abstract

This article presents a brief overview of an important area of neutron scattering: the general principles and techniques of elastic, quasielastic and inelastic scattering from a system composed predominately of incoherent scatterers. The methodology is then applied to the study of water, specifically when it is confined in nanometer-scale environments. The confined water exhibits uniquely anomalous properties in the supercooled state. It also nourishes biological functions, and supports essential chemical reactions in living systems. We focus on recent investigations of water encapsulated in nanoporous silica and carbon nanotubes, hydrated water in proteins and water or hydroxyl species incorporated in nanostructured minerals. Through these scientific examples, we demonstrate the advantages derived from the high sensitivity of incoherent neutron spectroscopy to hydrogen atom motions and hydrogen-bond dynamics, aided by rigorous data interpretation method using molecular dynamics simulations or theoretical modelling. This enables us to probe the inter-/intramolecular vibrations and relaxation/diffusion processes of water molecules in a complex environment.

Keywords

References

  1. Y. Oka and S. Koshizuka, J. Nucl. Sci. Tech. 38, 1081 (2001) https://doi.org/10.3327/jnst.38.1081
  2. R. Markova,'Investigation on clays for radioactive waste disposal,' University of Mining and Geology 'St. Ivan Rilski' Annual, Geology and Geophysics, Sofia, Part I. 46, 379 (2003)
  3. N. Malikova, A. CadZne, V. Marry, E. Dubois, P. Turq, J.-M. Zanotti and S. Longeville, Chem. Phys. 317, 226 (2005) https://doi.org/10.1016/j.chemphys.2005.04.035
  4. Methods of Experimental Physcis, edited by K. Sksld and D. L. Price (Academic Press, London, 1986), Vol. A-C
  5. Spectroscopy in Biology and Chemistry: Neutron, X-ray, Laser, edited by S.-H. Chen and S. Yip, (Academic Press, London, 1974)
  6. S.-H. Chen, 'Quasi-Elastic and Inelastic Neutron Scattering and Molecular Dynamics of water at Supercooled Temperature,' in Hydrogen Bonded Liquids, J. C. Dore, J. Teixeira Eds, Kluwer Academic Publishers, pp 289 (1991)
  7. E. Fratini, S.-H. Chen, P. Baglioni and M.-C. Bellissent-Funel, Phys. Rev. E 64, 020201(R) (2001) https://doi.org/10.1103/PhysRevE.64.020201
  8. E. Fratini, S.-H. Chen, P. Baglioni and M.-C. Bellissent-Funel, J. Phys. Chem. 106, 158 (2002) https://doi.org/10.1021/jp010536m
  9. A. Faraone, S.-H. Chen, E. Fratini, P. Baglioni, L. Liu and C. Brown, Phys. Rev. E 65, 040501 (2002) https://doi.org/10.1103/PhysRevE.65.040501
  10. A. Faraone, L. Liu, C.-Y. Mou, P.-C. Shih, J.R.D. Copley and S.-H. Chen, J. Chem. Phys. 119, 3963 (2003) https://doi.org/10.1063/1.1584653
  11. L. Liu, A. Faraone, C.-Y. Mou, C.-W. Yen and S.-H. Chen, J. of Phys.: Condensed Matter 16, S5403 (2004) https://doi.org/10.1088/0953-8984/16/45/007
  12. M.-C. Bellissent-Funel, S.-H. Chen and J.M. Zanotti, Phys. Rev. E 51, 4558 (1995) https://doi.org/10.1103/PhysRevE.51.4558
  13. P. Gallo, F. Sciortino, P. Tartaglia and S.-H Chen, Phys. Rev. Lett. 76, 2730 (1996) https://doi.org/10.1103/PhysRevLett.76.2730
  14. A. Meyer, R. M. Dimeo, P. M. Gehring and D. A. Neumann, Rev. Sci. Instrum. 74, 2759 (2003) https://doi.org/10.1063/1.1568557
  15. J. R.D. Copley and J. C. Cook, Chem. Phys. 292, 477 (2003) https://doi.org/10.1016/S0301-0104(03)00124-1
  16. C.-K. Loong et al., Nucl. Instr. Methods A260, 381 (1987) https://doi.org/10.1016/0168-9002(87)90106-9
  17. S.H. Lee and P.J. Rossky, J. Chem. Phys. 100, 3334(1994) https://doi.org/10.1063/1.466425
  18. C. A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991) https://doi.org/10.1016/0022-3093(91)90266-9
  19. K. Ito, C. T. Moynihan and C. A. Angell, Nature 398, 492 (1999) https://doi.org/10.1038/19042
  20. R. Bergman and J. Swenson, Nature 403, 283 (2000) https://doi.org/10.1038/35002027
  21. P. C. Shih, H. P. Lin and C. Y. Mou, Stud. Surf. Sci. Catal. 146, 557 (2003) https://doi.org/10.1016/S0167-2991(03)80444-5
  22. Y. Liu, W. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc. 122, 8791 (2000) https://doi.org/10.1021/ja001615z
  23. R. Ryoo, Sang Hoon Joo and Ji Man Kim, J. Phys. Chem. B 103, 7435 (1999) https://doi.org/10.1021/jp9911649
  24. The MCM-41-S materials are able to withstand prolonged (> 1 month) exposure to water at room temperature without structural decay. Pore size is determined by the capillary condensation in the standard Barrett-Joyner-Halenda (BJH) method in nitrogen adsorption experiment (at 77 K). Because of the uncertainty in estimating the thickness of surface immobile layer, the pore size is a nominal estimation
  25. R.J. Speedy and C.A. Angell, J. Chem. Phys. 65, 851 (1976) https://doi.org/10.1063/1.433153
  26. S.-H. Chen and M.-C. Bellissent-Funel, in Hydrogen Bond Networks, Vol. 435 of NATO Advances Study Institute, Series C: Mathematical and Physical Sciences, edited by M.-C. Bellissent-Funel and J.C. Dore, 289 (Kluwer Academic, Dordrecht, 1994)
  27. J.-M. Zanotti, M.-C. Bellissent-Funel and S.-H. Chen, Euro. Phys. Lett. 71, 91 (2005) https://doi.org/10.1209/epl/i2004-10529-2
  28. M. Tarek, and D. J. Tobias, Phys. Rev. Lett. 88, 138101 (2002) https://doi.org/10.1103/PhysRevLett.88.138101
  29. R. M. Lynden-Bell and J. C. Rasaiah, J. Chem. Phys. 105, 9266 (1996) https://doi.org/10.1063/1.472757
  30. M. Settles and W. Doster, Faraday Discuss. Chem. Soc. 103, 269 (1996) https://doi.org/10.1039/fd9960300269
  31. S.-H. Chen, C. Liao, F. Sciortino, P. Gallo and P. Tartaglia, Phys. Rev. E 59, 6708 (1999) https://doi.org/10.1103/PhysRevE.59.6708
  32. L. Liu, A. Faraone and S.-H. Chen, Phys. Rev. E 65, 041506 (2002) https://doi.org/10.1103/PhysRevE.65.041506
  33. F. Sciortino, P. Gallo, P. Tartaglia and S.-H Chen, Phys. Rev. E 54, 6331 (1996) https://doi.org/10.1103/PhysRevE.54.6331
  34. S.-H. Chen, P. Gallo, F. Sciortino and P. Tartaglia, Phys. Rev. E 56, 4231 (1997) https://doi.org/10.1103/PhysRevE.56.4231
  35. P. Gallo, M. Rovere and E. Spohr, Phys. Rev. Lett. 85, 4317 (2000) https://doi.org/10.1103/PhysRevLett.85.4317
  36. P. Gallo, M. Rovere and E. Spohr, J. Chem. Phys. 113, 11324 (2000) https://doi.org/10.1063/1.1328073
  37. J.M. Zanotti, M.-C. Bellissent-Funel and S.-H. Chen, Phys. Rev. E 59, 3084 (1999) https://doi.org/10.1103/PhysRevE.59.3084
  38. A. Botti, F. Bruni, A. Isopo, M.A. Ricci and A.K. Soper, J. Chem. Phys. 117, 6196 (2002) https://doi.org/10.1063/1.1503337
  39. M.J. Benham, J.C. Cook, J.-C. Li, D.K. Ross, P.L. Hall and B. Sarkissian, Phys. Rev. B 39, 633 (1989) https://doi.org/10.1103/PhysRevB.39.633
  40. C. Ronne, P.-O. Astrand and S.R. Keiding, Phys. Rev. Lett. 82, 2888 (1999) https://doi.org/10.1103/PhysRevLett.82.2888
  41. C. Ronne, and S.R. Keiding, J. Mol. Liq. 101, 199 (2002) https://doi.org/10.1016/S0167-7322(02)00093-4
  42. R. Bergman, J. Swenson, L. Borjesson and P. Jacobsson, J. Chem. Phys 113, 357 (2000) https://doi.org/10.1063/1.481800
  43. Y. Ryabov, A. Gutina, V. Archipov and Y. Feldman, J. Phys. Chem. B 105, 1845 (2001) https://doi.org/10.1021/jp0033061
  44. A. Gutina, T. Antropova, E. Rysiakiewicz-Pasek, K. Virnik and Y. Feldman, Microporous and Mesoporous Materials 58, 237 (2003) https://doi.org/10.1016/S1387-1811(02)00651-0
  45. F. D'Orazio, S. Bhattacharja, W.P. Halperin, K. Eguchi and T. Mizusaki, Phys. Rev. B 42, 9810 (1990) https://doi.org/10.1103/PhysRevB.42.9810
  46. S. Stapf, R. Kimmich and R.-O. Seitter, Phys. Rev. Lett. 75, 2855 (1995) https://doi.org/10.1103/PhysRevLett.75.2855
  47. J.P. Korb, J.-P. L. Malier, F. Cros, S. Xu and J. Jonas, Phys. Rev. Lett. 77, 2312 (1996) https://doi.org/10.1103/PhysRevLett.77.2312
  48. R. Holly, H. Peemoeller, C. Choi and M.M. Pintar, J. Chem. Phys. 108, 4183 (1998) https://doi.org/10.1063/1.475816
  49. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen and S.-H. Chen, J. Chem. Phys. 121, 10843 (2004) https://doi.org/10.1063/1.1832595
  50. P. G. Debenedetti and H. E. Stanley, Physics Today 56, 40 (June 2003) https://doi.org/10.1063/1.1595053
  51. M. A. Anisimov, J. V. Sengers and J. M. H. Levelt Sengers, 'Near-critical behavior of aqueous systems,' in Aquesous Systems at Elevated Temperatures and Pressures: Physical Chemistry in water, Steam and Hydrothermal Solutions, D.A. Palmer, R. Fernandez-Prini and A.H. Harvey (Eds.), 2004 Elsevier Ltd
  52. Private communication with L. Xu, S. Buldyrev and H. E. Stanley. The authors wish to acknowledge conversations with these researchers on Mar. 27, 2005 when they drew our attention to this interpretation of the TL line
  53. H. Kanno, R. J. Speedy and C. A. Angell, Science 189, 880 (1975) https://doi.org/10.1126/science.189.4206.880
  54. H.E. Stanley, Mysteries of water, M.-C. Bellissent-Funel (Ed.), The Nato Science Series A 305 (1999)
  55. C.A. Angell, S. Borick, and M. Grabow, J. Non-Crys. Sol. 205-207, 463 (1996) https://doi.org/10.1016/S0022-3093(96)00261-X
  56. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen and C.-Y. Mou, Phys. Rev. Lett. 95, 117802 (2005) https://doi.org/10.1103/PhysRevLett.95.117802
  57. S. Sastry, C.A. Angell, Nature Materials 2, 739 (2003) https://doi.org/10.1038/nmat994
  58. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360, 324 (1992) https://doi.org/10.1038/360324a0
  59. M.A. Ricci, S.-H. Chen, Phys. Rev. A 34, 1714 (1986) https://doi.org/10.1103/PhysRevA.34.1714
  60. A.K. Soper et al., Phys. Rev. Lett. 84, 2881 (2000) https://doi.org/10.1103/PhysRevLett.84.2881
  61. L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino and H. E. Stanley, Proc. Nat. Acad. Sci. 102, 16558 (2005) https://doi.org/10.1073/pnas.0507870102
  62. S. Maruyama et al., AIP conference proc. 708, 675 (2004) https://doi.org/10.1063/1.1764256
  63. W. Doster, S. Cusack, W. Petry, Nature (London) 337, 754-756 (1989) https://doi.org/10.1038/337754a0
  64. W. Doster, S. Cusack, W. Petry, Phys. Rev. Lett. 65, 1080 (1990) https://doi.org/10.1103/PhysRevLett.65.1080
  65. B. F. Rasmussen, A. M. Stock, D. Ringe, G. A. Petsko, Nature (London) 357, 423 (1992) https://doi.org/10.1038/357423a0
  66. 'Protein-solvent interactions,' edited by R. B. Gregory, (Marcel Dekker, New York, 1995)
  67. M. M. Teeter, Annu. Rev. Biophys. Biophys. Chem. 20, 577 (1991) https://doi.org/10.1146/annurev.bb.20.060191.003045
  68. J. A. Rupley, P.-H. Yang, G. Tollin, Water in Polymers, ed. Rowland, S. P. Washington D.C.: Am. Chem. Soc. (1980)
  69. I. R. T. Iben, et al. Phys. Rev. Lett. 62, 1916 (1989) https://doi.org/10.1103/PhysRevLett.62.1916
  70. C. A. Angell, Science 267, 1924 (1995) https://doi.org/10.1126/science.267.5206.1924
  71. F. Parak, E. W. Knapp, Proc. Natl. Acad. Sci. USA 81, 7088 (1984) https://doi.org/10.1073/pnas.81.22.7088
  72. A. Paciaroni, A. R. Bizzarri, S. Cannistraro, Phys. Rev. E 60, R2476 (1999) https://doi.org/10.1103/PhysRevE.60.R2476
  73. G. Caliskan, A. Kisliuk, A. P. Sokolov, J. Non-Crys. Sol. 307-310, 868 (2002) https://doi.org/10.1016/S0022-3093(02)01535-1
  74. P. Kumar, L. Xu, Z. Yan, M. G. Mazza, S. V. Buldyrev, S.-H. Chen, S. Sastry, H. E. Stanley, 'Protein Glass Transition and the Liquid-Liquid Critical Point of Water,' preprint at http://arxiv.org/abs/cond-mat/0603557
  75. J. A. Rupley, G. Careri, Protein hydration and function, Advances in Protein Chemistry 41, 37, edited by C.B. Anfinsen, J.T. Edsall, F.M. Richards and D.S. Eisenberg, (Academic Press, London, 1991)
  76. J. H. Roh, V. N. Novikov, R. B. Gregory, J. E. Curtis, Z. Chowdhuri, A. P. Sokolov, Phys. Rev. Lett. 95, 038101 (2005) https://doi.org/10.1103/PhysRevLett.95.038101
  77. M. Tarek, D. J. Tobias, Phys. Rev. Lett. 88, 138101 (2002) https://doi.org/10.1103/PhysRevLett.88.138101
  78. F. Parak, E. N. Frolov, R. L. Mossbauer, V. I. Goldanskii, J. Molec. Biol. 145, 825 (1981) https://doi.org/10.1016/0022-2836(81)90317-X
  79. M. Ferrand, A. J. Dianoux, W. Petry, G. Zaccai, Proc. Nat. Acad. Sci. USA 90, 9668 (1993) https://doi.org/10.1073/pnas.90.20.9668
  80. L. Cordone, M. Ferrand, E. Vitrano, G. Zaccai, Biophys. J. 76, 1043 (1999) https://doi.org/10.1016/S0006-3495(99)77269-3
  81. A. M. Tsai, D. A. Neumann, L. N. Bell, Biophys. J. 79, 2728 (2000) https://doi.org/10.1016/S0006-3495(00)76511-8
  82. H. Lichtenegger, W. Doster, T. Kleinert, A. Birk, B. Sepiol, G. Vogl, Biophys. J. 76, 414 (1999) https://doi.org/10.1016/S0006-3495(99)77208-5
  83. D. Vitkup, D. Ringe, G. A. Petsko, M. Karplus, Nat. Struct. Biol. 7, 34 (2000) https://doi.org/10.1038/71231
  84. G. Careri, Prog. Biophys. Mol. Biol. 70, 223 (1998) https://doi.org/10.1016/S0079-6107(98)00030-3
  85. S.-H. Chen, L. Liu, E. Fratini, P. Ganlioni, A. Faraone, E. Mamontov, 'Observation of fragile-to-strong dynamic crossover in protein hydration water,' submitted to Proc. Nat. Acad. Sci. USA
  86. E. Mamontov, J. Chem. Phys. 123, 171101 (2005) https://doi.org/10.1063/1.2125729
  87. S. Reich, C. Thomsen and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Cambridge: Wiley-VCH, Weinheim, 2004)
  88. M. Meyyappan, Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL., 2005)
  89. Y. Kong and J. Ma, Proc. Nat. Acad. Sci. USA 98, 14345 (2001) https://doi.org/10.1073/pnas.251507998
  90. A. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy and C. J. Burnham, Phys. Rev. Lett. 93, 35503 (2004) https://doi.org/10.1103/PhysRevLett.93.035503
  91. D. D. Klug and E. Whalley, J. Chem. Phys. 81, 1220 (1984) https://doi.org/10.1063/1.447808
  92. J. C. Li, J. Chem. Phys. 105, 6733 (1996) https://doi.org/10.1063/1.472525
  93. C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 1500 (2002) https://doi.org/10.1063/1.1423942
  94. C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002) https://doi.org/10.1063/1.1447904
  95. Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 329, 261 (2000) https://doi.org/10.1016/S0009-2614(00)00999-4
  96. K. Koga, G. T. Gao, H. Tanaka and X. C. Zeng, Nature 412, 802 (2001) https://doi.org/10.1038/35090532
  97. E. Mamontov, C. J. Burnham, S.-H. Chen, A. P. Moravsky, C.-K. Loong, N. R. de Souza and A. I. Kolesnikov, 'Mobility of water confined in single- and double-wall carbon nanotubes,' J. Chem. Phys. in press (2006) https://doi.org/10.1063/1.2194020
  98. C.-K. Loong, P. Thiyagarajan, J. Richardson, J. W., M. Ozawa and S. Suzuki, J. Catal. 171, 498 (1997) https://doi.org/10.1006/jcat.1997.1833
  99. G.-L. Tan and X.-J. Wu, Thin Solid Films 330, 59 (1998) https://doi.org/10.1016/S0040-6090(98)00759-7
  100. J. A. LaVerne, J. Phys. Chem. B 109, 5395 (2005) https://doi.org/10.1021/jp044167g
  101. C.-K. Loong, J. W. Richardson, Jr., and M. Ozawa, J. Catal. 157, 636 (1995) https://doi.org/10.1006/jcat.1995.1329
  102. E. Mamontov, J. Chem. Phys. 121, 9087 (2004) https://doi.org/10.1063/1.1804152
  103. E. Mamontov, J. Chem. Phys. 123, 024706: 1 (2005) https://doi.org/10.1063/1.1949171
  104. P. Gallo, m. Rovere, and E. Spohr, J. Chem. Phys. 13, 11324 (2000)
  105. M. J. Glimcher, 'The nature of the mineral phase in bone: Biological and clinical implications', in Metabolic Bone Disease 23-50 (Academic Press, New York, 1998)
  106. C.-K. Loong, C. Rey, L. T. Kuhn, C. Combes, Y. Wu, S.-H. Chen, and M. J. Glimcher, Bone 26, 599 (2000) https://doi.org/10.1016/S8756-3282(00)00273-8
  107. C.-K. Loong and M. Ozawa, J. Electroanal. Chem. 584, 5 (2005) https://doi.org/10.1016/j.jelechem.2004.04.023
  108. G. A. Lager, J. C. Nipko, and C.-K. Loong, Physica B 241-243, 406 (1998) https://doi.org/10.1016/S0921-4526(97)00603-0
  109. G. A. Lager, G. A. Swayze, C.-K. Loong, F. J. Rotella, J. W. Richardson, Jr., and R. E. Stoffregen, Canadian Mineralogist 39, 1131 (2001) https://doi.org/10.2113/gscanmin.39.4.1131
  110. C.-K. Loong and H. Koyanaka, J. Neut. Res. 13, 15 (2005) https://doi.org/10.1080/10238160412331297773