Quantitative Analysis of ″Polymer-Balls″ in Aqueous Solutions by Small-Angle Neutron Scattering

  • Shibayama, Mitsuhiro (Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo) ;
  • Okabe, Satoshi (Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo) ;
  • Nagao, Michihiro (Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo) ;
  • Sugihara, Shinji (Department of Macromolecular Science, Graduate School of Science, Osaka University) ;
  • Aoshima, Sadahito (Department of Macromolecular Science, Graduate School of Science, Osaka University) ;
  • Harada, Tamotsu (Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Matsuoka, Hideki (Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University)
  • Published : 2002.12.01

Abstract

The quantitative analysis of polymer micelles consisting of amphiphilic block copolymers was carried out by small-angle neutron scattering (SANS). The block copolymers, made of poly(2-ethoxyethyl vinyl ether-b-2-hydroxyethyl vinyl ether)(poly(EOVE-b-HOVE)), exhibited a sharp morphological transition from a homogeneous solution to a micelle structure with increasing temperature. This transition is accompanied by a formation of spherical domains of poly(EOVE) with a radius around 200 $\AA$. The variations of the size and its distribution of the domains were investigated as a function of polymer concentration and temperature. The validity of SANS analysis, including the wavelength- and incident-beam-smearing effects of the SANS instrument, was examined with a pre-calibrated polystyrene latex.

Keywords

References

  1. in Block Polymers G. E. Molau;S. L. Aggarwal(ed.)
  2. in Developments in Block Copolymers E. Helfand;Z. R. Wasserman;I. Goodman(ed.)
  3. Macromolecules v.16 M. Shibayama;T. Hashimoto;H. Kawai https://doi.org/10.1021/ma00241a010
  4. Macromolecules v.30 G. A. McConnell;A. P. Gast https://doi.org/10.1021/ma961241n
  5. Phys.Rev.Lett. v.71 G. A. McConnell;A. P. Gast;J. S. Huang;S. D. Smith https://doi.org/10.1103/PhysRevLett.71.2102
  6. Macromolecules v.31 C. I. Huang;T. P. Lodge https://doi.org/10.1021/ma980007p
  7. Macromolecules v.33 K. J. Hamley;T. P. Lodge;C. I. Huang https://doi.org/10.1021/ma000318b
  8. Science v.268 L. Zhang;A. Einsberg https://doi.org/10.1126/science.268.5218.1728
  9. Langmuir v.14 P. Alexandridis;U. Ollson;B. Lindman https://doi.org/10.1021/la971395b
  10. J. Polym.Sci. Polym. Chem. Ed. v.39 S. Aoshima;K. Hashimoto https://doi.org/10.1002/1099-0518(20010301)39:5<746::AID-POLA1047>3.0.CO;2-6
  11. J. Polym.Sci. Polym. Chem. Ed. v.38 S. Aoshima;S. Sugihara https://doi.org/10.1002/1099-0518(20001101)38:21<3962::AID-POLA130>3.0.CO;2-9
  12. Koubunshi Ronbunshu v.58 S. Sugihara;S. Aoshima https://doi.org/10.1295/koron.58.304
  13. J. Polym.Sci. Polym. Chem. Ed. v.39 S. Sugihara;S. Matsuzono;H. Sakai;M. Abe;S. Aoshima https://doi.org/10.1002/pola.1301
  14. Macromolecules v.14 H. Hashimoto;M. Fujimura;T. Hashimoto;H. Kawai https://doi.org/10.1021/ma50004a072
  15. Macromolecules v.35 S. Okabe;S. Sugihara;S. Aoshima;M. Shibayama https://doi.org/10.1021/ma020480+
  16. Proc. Natl.Acad.Sci. USA v.88 H. Matsuoka;K. Kakigami;N. Ise;Y. Kobayashi;Y. Machitani;T. Kikuchi;T. Kato https://doi.org/10.1073/pnas.88.15.6618
  17. Chemtract v.4 H. Matsuoka;N. Ise
  18. Activity Report on Neutron Scattering Res. v.8 M. Nagao;S. Okabe;M. Shibayama;H. Matsuoka;
  19. Physica v.213;214 Y. Ito;M. Imai;S. Takehashi
  20. Phys. Rev. Lett. v.73 D. Schwahn;H. Takeno;L. Willner;H. Hasegawa;H. Jinnai;T. Hashimoto;M. Imai https://doi.org/10.1103/PhysRevLett.73.3427
  21. Molecular Biology of the Cell B. Alberts;D. Bray;J. Lewis;M. Raff;K. Roberts;J. D. Watson
  22. Macromolecules v.27 M. Shibayama;M. Morimoto;S. Nomura https://doi.org/10.1021/ma00096a031
  23. Macromolecules v.29 M. Shibayama;M. Mizutani;S. Nomura https://doi.org/10.1021/ma951390q