DOI QR코드

DOI QR Code

Calculation of thermal neutron scattering data of MgF2 and its effect on beam shaping assembly for BNCT

  • Jiaqi Hu (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhaopeng Qiao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Lunhe Fan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yongqiang Tang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liangzhi Cao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Tiejun Zu (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Qingming He (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhifeng Li (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Sheng Wang (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2022.05.26
  • Accepted : 2022.12.21
  • Published : 2023.04.25

Abstract

MgF2 as a moderator material has been extensively used in the beam shaping assembly (BSA) that plays an important role in the boron neutron capture therapy (BNCT). Regarded as important for applications, the thermal neutron scattering data of MgF2 were calculated, based on the phonon expansion model. The structural properties of MgF2 were researched by the VASP code based on the ab-initio methods. The PHONOPY code was employed to calculate the phonon density of states. Furthermore, the NJOY code was used to calculate the thermal neutron scattering data of MgF2. The calculated inelastic cross sections plus absorption cross sections are in agreement with the available experimental data. The neutron transport in the BSA has been simulated by using a hybrid Monte-Carlo-Deterministic code NECP-MCX. The results indicated that compared with the calculation of the free gas model, the thermal neutron flux and epithermal neutron flux at the BSA exit port calculated by using the thermal neutron scattering data of MgF2 were reduced by 27.7% and 8.2%, respectively.

Keywords

Acknowledgement

The authors would like to thank the supports from the Guang-dong Basic and Applied Basic Research Foundation (Grant Nos. 2020B1515120035, 2021A1515010265, 2022A1515011462) and Innovative Scientific Program of CNNC.

References

  1. Rongshou Zheng, Siwei Zhang, Hongmei Zeng, et al., Cancer incidence and mortality in China, 2016, J. Natl. Cancer Cent. 2 (2022) 1-9. https://doi.org/10.1016/j.jncc.2022.02.002
  2. G. Nicolaou, R. Pietra, E. Sabbioni, et al., Multielement determination of metals in biologicalspecimens of hard metal workers: a study carried out by neutronactivation analysis, J. Trace Elem. Med. Biol. 1 (2) (1987) 73-77.
  3. G.L. Locher, Biological effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium Ther. 36 (1936) 1-13.
  4. J.G. Fantidis, A. Antoniadis, Optimization study for BNCT facility based on a DT neutron generator, Int. J. Radiat. Res. 13 (1) (2015) 13-24.
  5. J.G. Fantidis, E. Saitioti, D.V. Bandekas, N. Vordos, Optimised BNCT facility based on a compact DD neutron generator, Int. J. Radiat. Res. 11 (4) (2013) 207-214.
  6. H. Tanaka, Y. Sakurai, M. Suzuki, et al., Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS), Appl. Radiat. Isot. 69 (2011) 1642-1645. https://doi.org/10.1016/j.apradiso.2011.03.020
  7. Y. Hashimoto, F. Hiraga, Y. Kiyanagi, Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven 9Be(p,n) boron neutron capture therapy neutron source, Appl. Radiat. Isot. 106 (2015) 88-91. https://doi.org/10.1016/j.apradiso.2015.07.027
  8. J.G. Fantidis, Beam shaping assembly study for BNCT facility based on a 2.5 MeV proton accelerator on Li target, J. Theor. Appl. Phys. 12 (2018) 249-256. https://doi.org/10.1007/s40094-018-0312-1
  9. Akira Uritani, Yosuke Menjo, Kenichi Watanabe, et al., Design of beam shaping assembly for an accelerator-driven BNCT system in Nagoya university, JPS Conf. Proc. 22 (2018), 011002.
  10. Guangru Li, Wei Jiang, Lu Zhang, et al., Design of beam shaping assembly for an accelerator-based multi-terminal BNCT Facility, Nucl. Phys. Rev. 38 (2021) 80-88.
  11. Yongquan Wang, Zezheng Wang, Li Ning, et al., Design of beam shaping assembly for accelerator-based boron neutron capture therapy and studey on its clinical parameter, Atomic Energy Sci. Technol. 38 (2021) 80-88.
  12. R. Inoue, F. Hiraga, Y. Kiyanagi, Optimum design of a moderator system based on dose calculation for an accelerator driven boron neutron capture therapy, Appl. Radiat. Isot. 88 (2014) 225-228. https://doi.org/10.1016/j.apradiso.2013.12.017
  13. R.E. MacFarlane, New Thermal Neutron Scattering Files for ENDF/B-VI, vol. 2, Los Alamos National Laboratory, Release, 1994. LA-12639-MS.
  14. G. Kresse, J. Furthmuller, Vienna Ab-Initio Simulation Package, VASP the Guide, Vienna, 2002.
  15. Vei Wang, Nan Xu, Jincheng Liu, et al., VASPKIT: a user-friendly interface failitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267 (2021), 108033.
  16. K. Parlinski, PHONON Manual, Version 3.11, 2002. Krakow.
  17. Iyad I. Al-Qasir, Abdallah H. Qteish, Generation of thermal neutron scattering cross sections of MgF2 using Ab Initio lattice dyanmics calculations, PHYSOR (2016) 270. Sun Valley, ID, USA, May.
  18. J.G. Barker, D.F.R. Mildner, J.A. Rodriguez, P. Thiyagarajan, Neutron transmission of single-crystal magnesium fluoride, J. Appl. Crystallogr. 41 (2008) 1003-1008. https://doi.org/10.1107/S0021889808032858
  19. Qingming He, Zheng Qi, Jie Li, et al., NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport cod for the simulation of deep-penetration problems, Ann. Nucl. Energy 155 (2021), 107978.
  20. Jun Chen, Zhouyu Liu, Chen Zhao, et al., A new high-fidelity neutronics code NECP-X, Ann. Nucl. Energy 116 (2018) 417-428. https://doi.org/10.1016/j.anucene.2018.02.049
  21. Zheng Zheng, Qiliang Mei, Li Deng, Study on variance reduction technique based on adjoint Discrete Ordinate method, Ann. Nucl. Energy 112 (2018) 374-382. https://doi.org/10.1016/j.anucene.2017.10.028
  22. Zuokang Lin, Pu Yang, Qiankun Zhao, et al., Analysis of physical design for AB-BNCT neutron target, Atomic Energy Sci. Technol. 5 (2020) 804-810.
  23. Longwei Mei, Xiangzhou Cai, Dazhen Jiang, et al., Investigation of thermal neutron scattering data for BeF2 and LiF crystals, J. Nucl. Sci. Technol. 50 (2013) 419-424. https://doi.org/10.1080/00223131.2013.773169
  24. Zhifeng Li, Liangzhi Cao, Hongchun Wu, Qingming He, The impacts of thermal neutron scattering effect and resonance elastic scattering effect on FHRs, Ann. Nucl. Energy 97 (2016) 102-114. https://doi.org/10.1016/j.anucene.2016.07.014
  25. E. Garcia-Dominguez, H.R. Vega-Carrillo, G.M. de Leon, L.E. McBride, Noniterative unfolding algorithm for neutron spectrum measurements with Bonner spheres, IEEE Trans. Nucl. Sci. 46 (1999) 28-35. https://doi.org/10.1109/23.747764
  26. H. Tanaka, Y. Sakurai, M. Suzuki, et al., Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS), Appl. Radiat. Isot. 69 (2011) 1642-1645. https://doi.org/10.1016/j.apradiso.2011.03.020
  27. IAEA-TECDOC-1223, Current States of Neutron Capture Therapy, IAEA, 2001.