• Title/Summary/Keyword: Neutron Dose

Search Result 200, Processing Time 0.033 seconds

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

Different Expressions of HIF-$1\alpha$, Bcl-2 and Baxin DU145 Prostate Cancer Cells Transplanted in Nude Mouse between X-Ray and Neutron Irradiation (누드마우스에 주입된 DU-145 전립샘암에서 엑스선과 중성자선에 의한 HIF-$1\alpha$, Bcl-2, Bax 발현의 차이)

  • Kong, Moon-Kyoo;Kang, Jin-Oh;Kim, Sang-Ki;Shin, Dong-Oh;Park, Seo-Hyun;Kim, Chang-Ju;Chang, Hyun-Kyung
    • Radiation Oncology Journal
    • /
    • v.27 no.4
    • /
    • pp.218-227
    • /
    • 2009
  • Purpose: To investigate the radiobiologic effects of neutron and X-ray irradiation on DU-145 prostate carcinoma cells by identifying the differences of HIF-$1\alpha$ expression and apoptosis. Materials and Methods: Nude mice were injected with the human prostate cancer cell line, DU-145, and then irradiated with 2 Gy and 10 Gy X-rays, or 0.6 Gy and 3.3 Gy neutrons, respectively. The mice were sacrificed at 24 hours and 120 hours after irradiation. The expression levels of HIF-$1\alpha$, Bcl-2 and Bax were compared with immunohistochemical staining and western blotting. The apoptotic indexes were compared with the Terminal deoxynucleotidyl biotin-dUTP nick and labeling (TUNEL) assay. Results: At day 1, HIF-$1\alpha$ and Bcl-2 expression decreased, while Bax expression and the number of TUNEL positive cells increased in neutron irradiated groups for the control and X-ray irradiated groups. The Bcl-2/Bax ratio was significantly lower in the neutron irradiated groups regardless of dose (p=0.001). The same pattern of the differences in the expressions of the HIF-$1\alpha$, Bcl-2, Bax, Bcl-2/Bax ratio, and apoptotic indexes were indentified at day 5. HIF-$1\alpha$ expression was related with Bcl-2 (p=0.031), Bax (p=0.037) expressions and the apoptotic indexes (p=0.016) at day 5. Conclusion: Neutron irradiation showed a decrease in HIF-$1\alpha$, Bcl-2 expression, and Bcl-2/Bax ratio, but increased Bax expression regardless of dose. This study suggests that the differences radiobiological responses between photon and neutron irradiation may be related to different HIF-$1\alpha$ expression and subsequent apoptotic protein expressions.

Basics of particle therapy I: physics

  • Park, Seo-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.135-146
    • /
    • 2011
  • With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfi ll the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

Shielding analyses supporting the Lithium loop design and safety assessments in IFMIF-DONES

  • Gediminas Stankunas ;Yuefeng Qiu ;Francesco Saverio Nitti ;Juan Carlos Marugan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1210-1217
    • /
    • 2023
  • The assessment of radiation fields in the lithium loop pipes and dump tank during the operation were performed for International Fusion Materials Irradiation Facility - DEMO-Oriented NEutron Source (IFMIF-DONES) in order to obtain the radiation dose-rate maps in the component surroundings. Variance reduction techniques such as weight window mesh (produced with the ADVANTG code) were applied to bring the statistical uncertainty down to a reasonable level. The biological dose was given in the study, and potential shielding optimization is suggested and more thoroughly evaluated. The MCNP Monte Carlo was used to simulate a gamma particle transport for radiation shielding purposes for the current Li Systems' design. In addition, the shielding efficiency was identified for the Impurity Control System components and the dump tank. The analysis reported in this paper takes into account the radiation decay source from and activated corrosion products (ACPs), which is created by d-Li interaction. As a consequence, the radiation (resulting from ACPs and Be-7) shielding calculations have been carried out for safety considerations.

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

The Performance Test of Teledyne PB-3 Personnel Dosimetry System by Intercomparison Study (국제상호비교검증을 통한 Teledyne PB-3 개인선량계시스템의 성능시험)

  • Lee, Sang-Yoon;Lee, Hyung-Sub;Kim, Jung-Lyul;Yoon, Suk-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.133-145
    • /
    • 1994
  • Recently, the Ministry of Science and Technology issued a Ministerial Ordinance (No 1992-15) about the technical criteria on personnel radiation dosimetry. In today's climate, it is important to demonstrate and document that the processor's systems and services to others meet national standards of quality. The purpose of this study is to verify the performance of the Teledyne PB-3 personnel dosimetry system that is generally used in Korea Atomic Energy Research Institute(KAERI) by intercomparison with Oak Ridge National Laboratory. The KAERI has been participated in this personnel dosimetry intercomparison study(PDIS) program since 1991 and it could be possible to test and calibrate personnel monitoring system. This report presents a summary and analysis of by about 50 dose equivalent measurements reported for PDIS-16 through 18 (1991 -1993) with emphasis on neutron dose equivalent sensitivity, accuracy and precision. Relationships of the PDIS results to occupational neutron monitoring and methods to improve personnel dosimetry performance are also discussed.

  • PDF

A Study on the Technology of Measuring and Analyzing Neutrons and Gamma-Rays Using a CZT Semiconductor Detector (CZT 반도체 검출기를 활용한 중성자 및 감마선 측정과 분석 기술에 관한 연구)

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.57-67
    • /
    • 2022
  • CZT detectors, which are compound semiconductors that have been widely used recently for gamma-ray detection purposes, are difficult to detect neutrons because direct interaction with them does not occur unlike gamma-rays. In this paper, a method of detecting and determining energy levels (fast neutrons and thermal neutrons) of neutrons, in addition of identifying energy and nuclide of gamma-rays, and evaluating gamma dose rates using a CZT semiconductor detector is described. Neutrons may be detected by a secondary photoelectric effect or compton scattering process with a characteristic gamma-ray of 558.6 keV generated by a capture reaction (113Cd + 1n → 114Cd + 𝛾) with cadmium (Cd) in the CZT detector. However, in the case of fast neutrons, the probability of capture reaction with cadmium (Cd) is very low, so it must be moderated to thermal neutrons using a moderator and the material and thickness of moderator should be determined in consideration of the portability and detection efficiency of the equipment. Conversely, in the case of thermal neutrons, the detection efficiency decreases due to shielding effect of moderator itself, so additional CZT detector that do not contain moderator must be configured. The CZT detector that does not contain moderator can be used to evaluate energy, nuclide, and gamma dose-rate for gamma-rays. The technology proposed in this paper provides a method for detecting both neutrons and gamma-rays using a CZT detector.

Dosimetric Quantities for 300 keV Neutrons (300 keV 중성자(中性子)에 대한 방사선량(放射線量) 관계량(關係量)의 산정(算定))

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 1986
  • Dosimetric quantities for 300 keV neutrons in the ICRU standard tissue sphere were evaluated. The Monte Carlo code NEDEP which performs neutron-photon-charged particles coupled transport was used in the direct estimation of absorbed dose and dose equivalent. Some important quantities calculated are as follows; Deep dose equivalent index $H_{I,d}:1.78{\times}10^{11}\;Sv-cm^2$ Shallow dose equivalent index $H_{I,s}:2.08{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(0.07):1.7{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(10):1.78{\times}10^{-11}\;Sv-cm^2$ Effective quality factor $\bar{Q}^*(10):12.4$

  • PDF