DOI QR코드

DOI QR Code

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit

연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석

  • Received : 2011.02.11
  • Accepted : 2011.05.23
  • Published : 2011.06.30

Abstract

The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

한국방사성폐기물관리공단 주관 하에 개념 설계된, 연소도이득효과 적용 대용량 수송용기에 대해 방사선 차폐 안전성을 평가하였으며 여러 방사선원들이 수송용기 주변 선량률 분포에 미치는 영향을 분석하였다. 가능한 모든 방사선원(중성자선원, 감마선원, 방사화선원)들을 고려하였으며 보수적인 가상의 핵연료(너비: WH 17 RFA, 축방향: CE Type)를 선정, 실제 상황과 동일한 조건이 되도록 계산모델을 구축하였다. 모든 조건(정상 및 가상사고 조건)에서 표면선량률과 외부선량률이 법적기준치를 만족하고 있었으며 축방향 높이에 따라 각 선원들의 기여도가 변하고 있었지만 정상조건에서의 최대 표면선량률과 외부선량률은 방사화선원에 의한 영향이 가장 높은 것으로 확인되었다. 가상사고 조건에서는, 중성자선원의 선량률 기여도가 대략 90%에 달하고 있었으나 수송용기 끝단에서는 방사화선원에 의한 선량률이 급격하게 상승함에 따라 BUC 적용 수송용기의 방사선 차폐해석시 충분히 보수적으로 해석되도록 방사화선원을 정밀하게 분석하여 설정하여야 할 것으로 판단되었다.

Keywords

References

  1. 방사성폐기물 안전관리 통합정보시스템, http://wacid.kins.re.kr/SNF/snf10.aspx
  2. International Atomic Energy Agency, Implementation of Burnup Credit in Spent Fuel Management Systems, IAEA-TECDOC-1241 (2001).
  3. International Atomic Energy Agency, Practices and Developments in Spent Fuel Burnup Credit Applications. IARA-TECDOC-1378 (2008).
  4. U.S. Nuclear Regulatory Commission, Interim Staff Guidance(ISG)-8 Rev. 2, U.S. Nuclear Regulatory Commission (2002).
  5. Gye-Hong Kim, Woon-zin Oh, Kune-woo Lee, and Bum-Kyoung Seo, "Fabrication and Estimation of the Plastic Detector for Measuring the Contamination for Beta-ray Level of the Kind of Duct Waste," J. of the Korean Radioactive Waste Society, 3(3), pp. 159-165 (2005).
  6. Oak Ridge National Laboratory, Benchmark of SCALE(SAS2H) Isotopic Predictions of Depletion Analyses for San Onofre PWR MOX Fuel, ORNL/TM-1999/326 (2000).
  7. U. S. Nuclear Regulatory Commission, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, NUREG-1617 (2000).
  8. Dong-Keun Cho, Seok-Kyun Yoon, Heui-Joo Choi, Jongwon Choi, and Won Il Ko, "Reference Spent Nuclear Fuel for Pyroprocessing Facility Design," J. of the Korean Radioactive Waste Society, 6(3), pp. 225-232 (2008).
  9. Pacific Northwest Laboratory, Spent Fuel Assembly Hardware: Characterization and 10CFR61 Classification for Waste Disposal, PNL-6906 (1989).
  10. U.S. Department of Energy, Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages, DOE/RW-0472 (1998).
  11. Oak Ridge National Laboratory (ORNL), Recommendations for Shielding Evaluations for Transport and Storage Packages, NUREG/CR-6802 (2002).
  12. ICRP, Conversion Coefficients for Use in Radiological Protection Against External Radiation, ICRP-74 (1996).

Cited by

  1. 방사성폐기물드럼 핵종재고량 평가시설 구축에 따른 방사선차폐 영향평가 vol.10, pp.2, 2012, https://doi.org/10.7733/jkrws.2012.10.2.117