DOI QR코드

DOI QR Code

Basics of particle therapy I: physics

  • Park, Seo-Hyun (Department of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Kang, Jin-Oh (Department of Radiation Oncology, Kyung Hee University School of Medicine)
  • Received : 2011.04.04
  • Accepted : 2011.07.04
  • Published : 2011.09.30

Abstract

With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfi ll the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

Keywords

References

  1. Hirao Y, Ogawa H, Yamada S, et al. Heavy ion synchrotron for medical use: HIMAC project at NIRS-Japan. Nuclear Physics A 1992;538:541-50. https://doi.org/10.1016/0375-9474(92)90803-R
  2. Particle Therapy Co-operative Group. Particle therapy facilities in a planning stage or under construction [Internet]. Particle Therapy Co-operative Group; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/newptcentres.html.
  3. Jermann M. Patient statistics per end of 2010: Hadron therapy patient statistics. Particle Therapy Co-Operative Group; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/ patient_statistics.html.
  4. Khan FM. The physics of radiation therapy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 6-7.
  5. Van der Kogel AJ, Joiner MC. Basic clinical radiobiology. 4th ed. London, UK: Hodder Arnold; 2009. p. 68.
  6. Amaldi U. Hadrontherapy in the world and the programmes of the TERA Foundation. Tumori 1998;84:188-99.
  7. Goitein M, Jermann M. The relative costs of proton and X-ray radiation therapy. Clin Oncol (R Coll Radiol) 2003;15:S37-50. https://doi.org/10.1053/clon.2002.0174
  8. International Commission on Radiation Units and Measurements (ICRU). Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44. Bethesda, MD: ICRU Pub.; 1989.
  9. National Institute of Standards and Technology. Stopping power and range tables for protons [Internet]. Gaithersburg, MD: National Institute of Standards and Technology; 2011 [cited 2011 Jun 20]. Available from: http://physics.nist.gov/ PhysRefData/Star/Text/PSTAR.html.
  10. International Commission on Radiation Units and Measurements (ICRU). Stopping powers for protons and alpha particles. ICRU Report 49. Bethesda, MD: ICRU Pub.; 1993.
  11. International Commission on Radiation Units and Measurements (ICRU). Nuclear data for neutron and proton radiotherapy and for radiation protection. ICRU Report 63. Bethesda, MD: ICRU Pub.; 2000.
  12. Uehara S, Toburen LH, Wilson WE, Goodhead DT, Nikjoo H. Calculations of electronic stopping cross sections for lowenergy protons in water. Radiat Phys Chem 2000;59:1-11. https://doi.org/10.1016/S0969-806X(00)00190-0
  13. Dingfelder M, Inokuti M, Paretzke HG. Inelastic-collision cross sections of liquid water for interactions of energetic protons. Radiat Phys Chem 2000;59:255-75. https://doi.org/10.1016/S0969-806X(00)00263-2
  14. Matsuzaki Y, Date H, Sutherland KL, Kiyanagi Y. Nuclear collision processes around the Bragg peak in proton therapy. Radiol Phys Technol 2010;3:84-92. https://doi.org/10.1007/s12194-009-0081-2
  15. Nikjoo H, Goodhead DT. Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiations. Phys Med Biol 1991;36:229-38. https://doi.org/10.1088/0031-9155/36/2/007
  16. Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 2002;47:747-64. https://doi.org/10.1088/0031-9155/47/5/305
  17. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1-332.
  18. National Research Council. Studies in penetration of charged particles in matter. Nuclear science series report 39. Washington, DC: National Academy of Sciences-National Research Council; 1964.
  19. Lyman JT, Awschalom M, Berardo P, et al. Protocol for heavy charged-particle therapy beam dosimetry: a report of Task Group 20 Radiation Therapy Committee American Association of Physicists in Medicine. AAPM Report 16. New York, NY: American Institute of Physics for the American Association of Physicists in Medicine; 1986.
  20. Bichsel H, Hiraoka T, Omata K. Aspects of fast-ion dosimetry. Radiat Res 2000;153:208-19. https://doi.org/10.1667/0033-7587(2000)153[0208:AOFID]2.0.CO;2
  21. Mairani A. Nucleus-nucleus interaction modelling and applications in ion therapy treatment planning. Sci Acta 2007;1:129-32.
  22. Enghardt W, Fromm WD, Manfrass P, Schardt D. Limited-angle 3D reconstruction of PET images for dose localization in light ion tumour therapy. Phys Med Biol 1992;37:791-8. https://doi.org/10.1088/0031-9155/37/3/021
  23. Ponisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 2004;49:5217-32. https://doi.org/10.1088/0031-9155/49/23/002
  24. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. pp. 410-11.
  25. Pshenichnov I, Mishustin I, Greiner W. Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys Med Biol 2006;51:6099-112. https://doi.org/10.1088/0031-9155/51/23/011
  26. Crespo P, Shakirin G, Enghardt W. On the detector arrangement for in-beam PET for hadron therapy monitoring. Phys Med Biol 2006;51:2143-63. https://doi.org/10.1088/0031-9155/51/9/002
  27. Sardari D, Verga N, Saidi P. Estimation of the radioactivity produced in patient tissue during carbon ion therapy. Mod Appl Sci 2010;4:26-8.
  28. Zirkle RE, Tobias CA. Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch Biochem Biophys 1953;47:282-306. https://doi.org/10.1016/0003-9861(53)90467-6
  29. Chatterjee A, Schaefer HJ. Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 1976;13:215-27. https://doi.org/10.1007/BF01330766
  30. Yousif A, Bahari IB, Yasir MS. Physical quality parameters affect charged particles effectiveness at lower doses. World Appl Sci J 2010;11:1225-9.
  31. Paganetti H, Goitein M. Radiobiological significance of beamline dependent proton energy distributions in a spreadout Bragg peak. Med Phys 2000;27:1119-26. https://doi.org/10.1118/1.598977
  32. Paganetti H. Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2003;2:413-26. https://doi.org/10.1177/153303460300200506
  33. Robertson JB, Williams JR, Schmidt RA, Little JB, Flynn DF, Suit HD. Radiobiological studies of a high-energy modulated proton beam utilizing cultured mammalian cells. Cancer 1975;35:1664-77. https://doi.org/10.1002/1097-0142(197506)35:6<1664::AID-CNCR2820350628>3.0.CO;2-#
  34. Grassberger C, Trofi mov A, Lomax A, Paganetti H. Variations in linear energy transfer within clinical proton therapy fi elds and the potential for biological treatment planning. Int J Radiat Oncol Biol Phys 2011;80:1559-66. https://doi.org/10.1016/j.ijrobp.2010.10.027
  35. Schaffner B, Pedroni E. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verifi cation of the relation between CT-HU and proton stopping power. Phys Med Biol 1998;43:1579-92. https://doi.org/10.1088/0031-9155/43/6/016
  36. Penfold SN, Rosenfeld AB, Schulte RW, Schubert KE. A more accurate reconstruction system matrix for quantitative proton computed tomography. Med Phys 2009;36:4511-8. https://doi.org/10.1118/1.3218759
  37. Wang D, Mackie TR, Tome WA. Bragg peak prediction from quantitative proton computed tomography using different path estimates. Phys Med Biol 2011;56:587-99. https://doi.org/10.1088/0031-9155/56/3/005
  38. Jiang H, Wang B, Xu XG, Suit HD, Paganetti H. Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol 2005;50:4337-53. https://doi.org/10.1088/0031-9155/50/18/007
  39. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington, DC: National Academy Press; 2006.
  40. Taddei PJ, Mahajan A, Mirkovic D, et al. Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation. Phys Med Biol 2010;55:7067-80. https://doi.org/10.1088/0031-9155/55/23/S08
  41. Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
  42. Gottschalk B. Neutron dose in scattered and scanned proton beams: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006;65:1-7). Int J Radiat Oncol Biol Phys 2006;66:1594.
  43. Ares C, Hug EB, Lomax AJ, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: fi rst long-term report. Int J Radiat Oncol Biol Phys 2009;75:1111-8. https://doi.org/10.1016/j.ijrobp.2008.12.055
  44. Ballarini F, Alloni D, Facoetti A, Ottolenghi A. Heavy-ion effects: from track structure to DNA and chromosome damage. New J Phys 2008;10:1-17.
  45. Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 1994;65:7-17. https://doi.org/10.1080/09553009414550021
  46. Scholz M, Matsufuji N, Kanai T. Test of the local effect model using clinical data: tumour control probability for lung tumours after treatment with carbon ion beams. Radiat Prot Dosimetry 2006;122:478-9. https://doi.org/10.1093/rpd/ncl426
  47. Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 2008;71:866-72. https://doi.org/10.1016/j.ijrobp.2008.02.037
  48. Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy: the model and its approximation. Radiat Environ Biophys 1997;36:59-66. https://doi.org/10.1007/s004110050055
  49. Watanabe R, Wada S, Funayama T, Kobayashi Y, Saito K, Furusawa Y. Monte Carlo simulation of radial distribution of DNA strand breaks along the C and Ne ion paths. Radiat Prot Dosimetry 2011;143:186-90. https://doi.org/10.1093/rpd/ncq539
  50. Hoglund E, Blomquist E, Carlsson J, Stenerlow B. DNA damage induced by radiation of different linear energy transfer: initial fragmentation. Int J Radiat Biol 2000;76:539-47. https://doi.org/10.1080/095530000138556
  51. Lobrich M, Cooper PK, Rydberg B. Non-random distribution of DNA double-strand breaks induced by particle irradiation. Int J Radiat Biol 1996;70:493-503. https://doi.org/10.1080/095530096144680

Cited by

  1. SECONDARY NEUTRON DOSES IN A PROTON THERAPY CENTRE vol.170, pp.1, 2011, https://doi.org/10.1093/rpd/ncv458
  2. Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation vol.45, pp.4, 2011, https://doi.org/10.1002/mp.12807
  3. Perturbations of radiation field caused by titanium dental implants in pencil proton beam therapy vol.63, pp.21, 2011, https://doi.org/10.1088/1361-6560/aae656
  4. Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy vol.14, pp.10, 2011, https://doi.org/10.1021/acsnano.0c04375
  5. Proton Irradiation the DNA of Human Cells vol.1879, pp.3, 2011, https://doi.org/10.1088/1742-6596/1879/3/032059
  6. Highly Stable Silica-Coated Bismuth Nanoparticles Deliver Tumor Microenvironment-Responsive Prodrugs to Enhance Tumor-Specific Photoradiotherapy vol.143, pp.30, 2011, https://doi.org/10.1021/jacs.1c03303
  7. Radiation-Induced Fibrotic Tumor Microenvironment Regulates Anti-Tumor Immune Response vol.13, pp.20, 2011, https://doi.org/10.3390/cancers13205232
  8. Geant4 전산모사를 이용한 종양의 밀도 변화에 따른 양성자의 선량 분포 vol.15, pp.6, 2011, https://doi.org/10.7742/jksr.2021.15.6.771