References
- Hirao Y, Ogawa H, Yamada S, et al. Heavy ion synchrotron for medical use: HIMAC project at NIRS-Japan. Nuclear Physics A 1992;538:541-50. https://doi.org/10.1016/0375-9474(92)90803-R
- Particle Therapy Co-operative Group. Particle therapy facilities in a planning stage or under construction [Internet]. Particle Therapy Co-operative Group; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/newptcentres.html.
- Jermann M. Patient statistics per end of 2010: Hadron therapy patient statistics. Particle Therapy Co-Operative Group; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/ patient_statistics.html.
- Khan FM. The physics of radiation therapy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 6-7.
- Van der Kogel AJ, Joiner MC. Basic clinical radiobiology. 4th ed. London, UK: Hodder Arnold; 2009. p. 68.
- Amaldi U. Hadrontherapy in the world and the programmes of the TERA Foundation. Tumori 1998;84:188-99.
- Goitein M, Jermann M. The relative costs of proton and X-ray radiation therapy. Clin Oncol (R Coll Radiol) 2003;15:S37-50. https://doi.org/10.1053/clon.2002.0174
- International Commission on Radiation Units and Measurements (ICRU). Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44. Bethesda, MD: ICRU Pub.; 1989.
- National Institute of Standards and Technology. Stopping power and range tables for protons [Internet]. Gaithersburg, MD: National Institute of Standards and Technology; 2011 [cited 2011 Jun 20]. Available from: http://physics.nist.gov/ PhysRefData/Star/Text/PSTAR.html.
- International Commission on Radiation Units and Measurements (ICRU). Stopping powers for protons and alpha particles. ICRU Report 49. Bethesda, MD: ICRU Pub.; 1993.
- International Commission on Radiation Units and Measurements (ICRU). Nuclear data for neutron and proton radiotherapy and for radiation protection. ICRU Report 63. Bethesda, MD: ICRU Pub.; 2000.
- Uehara S, Toburen LH, Wilson WE, Goodhead DT, Nikjoo H. Calculations of electronic stopping cross sections for lowenergy protons in water. Radiat Phys Chem 2000;59:1-11. https://doi.org/10.1016/S0969-806X(00)00190-0
- Dingfelder M, Inokuti M, Paretzke HG. Inelastic-collision cross sections of liquid water for interactions of energetic protons. Radiat Phys Chem 2000;59:255-75. https://doi.org/10.1016/S0969-806X(00)00263-2
- Matsuzaki Y, Date H, Sutherland KL, Kiyanagi Y. Nuclear collision processes around the Bragg peak in proton therapy. Radiol Phys Technol 2010;3:84-92. https://doi.org/10.1007/s12194-009-0081-2
- Nikjoo H, Goodhead DT. Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiations. Phys Med Biol 1991;36:229-38. https://doi.org/10.1088/0031-9155/36/2/007
- Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 2002;47:747-64. https://doi.org/10.1088/0031-9155/47/5/305
- The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1-332.
- National Research Council. Studies in penetration of charged particles in matter. Nuclear science series report 39. Washington, DC: National Academy of Sciences-National Research Council; 1964.
- Lyman JT, Awschalom M, Berardo P, et al. Protocol for heavy charged-particle therapy beam dosimetry: a report of Task Group 20 Radiation Therapy Committee American Association of Physicists in Medicine. AAPM Report 16. New York, NY: American Institute of Physics for the American Association of Physicists in Medicine; 1986.
- Bichsel H, Hiraoka T, Omata K. Aspects of fast-ion dosimetry. Radiat Res 2000;153:208-19. https://doi.org/10.1667/0033-7587(2000)153[0208:AOFID]2.0.CO;2
- Mairani A. Nucleus-nucleus interaction modelling and applications in ion therapy treatment planning. Sci Acta 2007;1:129-32.
- Enghardt W, Fromm WD, Manfrass P, Schardt D. Limited-angle 3D reconstruction of PET images for dose localization in light ion tumour therapy. Phys Med Biol 1992;37:791-8. https://doi.org/10.1088/0031-9155/37/3/021
- Ponisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 2004;49:5217-32. https://doi.org/10.1088/0031-9155/49/23/002
- Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. pp. 410-11.
- Pshenichnov I, Mishustin I, Greiner W. Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys Med Biol 2006;51:6099-112. https://doi.org/10.1088/0031-9155/51/23/011
- Crespo P, Shakirin G, Enghardt W. On the detector arrangement for in-beam PET for hadron therapy monitoring. Phys Med Biol 2006;51:2143-63. https://doi.org/10.1088/0031-9155/51/9/002
- Sardari D, Verga N, Saidi P. Estimation of the radioactivity produced in patient tissue during carbon ion therapy. Mod Appl Sci 2010;4:26-8.
- Zirkle RE, Tobias CA. Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch Biochem Biophys 1953;47:282-306. https://doi.org/10.1016/0003-9861(53)90467-6
- Chatterjee A, Schaefer HJ. Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 1976;13:215-27. https://doi.org/10.1007/BF01330766
- Yousif A, Bahari IB, Yasir MS. Physical quality parameters affect charged particles effectiveness at lower doses. World Appl Sci J 2010;11:1225-9.
- Paganetti H, Goitein M. Radiobiological significance of beamline dependent proton energy distributions in a spreadout Bragg peak. Med Phys 2000;27:1119-26. https://doi.org/10.1118/1.598977
- Paganetti H. Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2003;2:413-26. https://doi.org/10.1177/153303460300200506
- Robertson JB, Williams JR, Schmidt RA, Little JB, Flynn DF, Suit HD. Radiobiological studies of a high-energy modulated proton beam utilizing cultured mammalian cells. Cancer 1975;35:1664-77. https://doi.org/10.1002/1097-0142(197506)35:6<1664::AID-CNCR2820350628>3.0.CO;2-#
- Grassberger C, Trofi mov A, Lomax A, Paganetti H. Variations in linear energy transfer within clinical proton therapy fi elds and the potential for biological treatment planning. Int J Radiat Oncol Biol Phys 2011;80:1559-66. https://doi.org/10.1016/j.ijrobp.2010.10.027
- Schaffner B, Pedroni E. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verifi cation of the relation between CT-HU and proton stopping power. Phys Med Biol 1998;43:1579-92. https://doi.org/10.1088/0031-9155/43/6/016
- Penfold SN, Rosenfeld AB, Schulte RW, Schubert KE. A more accurate reconstruction system matrix for quantitative proton computed tomography. Med Phys 2009;36:4511-8. https://doi.org/10.1118/1.3218759
- Wang D, Mackie TR, Tome WA. Bragg peak prediction from quantitative proton computed tomography using different path estimates. Phys Med Biol 2011;56:587-99. https://doi.org/10.1088/0031-9155/56/3/005
- Jiang H, Wang B, Xu XG, Suit HD, Paganetti H. Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol 2005;50:4337-53. https://doi.org/10.1088/0031-9155/50/18/007
- Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington, DC: National Academy Press; 2006.
- Taddei PJ, Mahajan A, Mirkovic D, et al. Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation. Phys Med Biol 2010;55:7067-80. https://doi.org/10.1088/0031-9155/55/23/S08
- Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
- Gottschalk B. Neutron dose in scattered and scanned proton beams: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006;65:1-7). Int J Radiat Oncol Biol Phys 2006;66:1594.
- Ares C, Hug EB, Lomax AJ, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: fi rst long-term report. Int J Radiat Oncol Biol Phys 2009;75:1111-8. https://doi.org/10.1016/j.ijrobp.2008.12.055
- Ballarini F, Alloni D, Facoetti A, Ottolenghi A. Heavy-ion effects: from track structure to DNA and chromosome damage. New J Phys 2008;10:1-17.
- Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 1994;65:7-17. https://doi.org/10.1080/09553009414550021
- Scholz M, Matsufuji N, Kanai T. Test of the local effect model using clinical data: tumour control probability for lung tumours after treatment with carbon ion beams. Radiat Prot Dosimetry 2006;122:478-9. https://doi.org/10.1093/rpd/ncl426
- Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 2008;71:866-72. https://doi.org/10.1016/j.ijrobp.2008.02.037
- Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy: the model and its approximation. Radiat Environ Biophys 1997;36:59-66. https://doi.org/10.1007/s004110050055
- Watanabe R, Wada S, Funayama T, Kobayashi Y, Saito K, Furusawa Y. Monte Carlo simulation of radial distribution of DNA strand breaks along the C and Ne ion paths. Radiat Prot Dosimetry 2011;143:186-90. https://doi.org/10.1093/rpd/ncq539
- Hoglund E, Blomquist E, Carlsson J, Stenerlow B. DNA damage induced by radiation of different linear energy transfer: initial fragmentation. Int J Radiat Biol 2000;76:539-47. https://doi.org/10.1080/095530000138556
- Lobrich M, Cooper PK, Rydberg B. Non-random distribution of DNA double-strand breaks induced by particle irradiation. Int J Radiat Biol 1996;70:493-503. https://doi.org/10.1080/095530096144680
Cited by
- SECONDARY NEUTRON DOSES IN A PROTON THERAPY CENTRE vol.170, pp.1, 2011, https://doi.org/10.1093/rpd/ncv458
- Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation vol.45, pp.4, 2011, https://doi.org/10.1002/mp.12807
- Perturbations of radiation field caused by titanium dental implants in pencil proton beam therapy vol.63, pp.21, 2011, https://doi.org/10.1088/1361-6560/aae656
- Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy vol.14, pp.10, 2011, https://doi.org/10.1021/acsnano.0c04375
- Proton Irradiation the DNA of Human Cells vol.1879, pp.3, 2011, https://doi.org/10.1088/1742-6596/1879/3/032059
- Highly Stable Silica-Coated Bismuth Nanoparticles Deliver Tumor Microenvironment-Responsive Prodrugs to Enhance Tumor-Specific Photoradiotherapy vol.143, pp.30, 2011, https://doi.org/10.1021/jacs.1c03303
- Radiation-Induced Fibrotic Tumor Microenvironment Regulates Anti-Tumor Immune Response vol.13, pp.20, 2011, https://doi.org/10.3390/cancers13205232
- Geant4 전산모사를 이용한 종양의 밀도 변화에 따른 양성자의 선량 분포 vol.15, pp.6, 2011, https://doi.org/10.7742/jksr.2021.15.6.771