• Title/Summary/Keyword: Neutral loss

Search Result 192, Processing Time 0.019 seconds

Termiticidal Activities of Chamaecyparis obtusa Endl. Heartwood (편백재의 흰개미 살충활성에 관한 연구)

  • Choi, In-Gyu;Kang, Ha-Young
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.67-71
    • /
    • 2000
  • Termiticidal activities of Chamaecyparis obtusa were quantitatively evaluated, and the activity differences between supporting materials such as woodmeal and filter paper or between species were defined based on the termiticidal activity value(TAV). It was found that TAV was high in the following order ; C. obtusa>Litsea coreana>C. obtusa var. formosensis>Ternstroemia gymnanthera. In particular, termiticidal activity of C. obtusa heartwood was stronger by 5 to 9 times than that of other three species. Median survival dosage(MSD) of C. obtusa was 108.8 mg. In case of woodmeal or filter paper tests with C. obtusa, termiticidal activities were inversely proportional to logarithms values of an added sample weight and median survival time(MST). The difference of termiticidal activities between woodmeal and filter paper in the methanol extracts was small, but that in the neutral fraction was enormous as 3.21 times. However, termiticidal activity of neutral fraction was corresponded to 17 to 53% of original woodmeal, and 47 to 83% of termiticidal activity was considered as a loss in test process.

  • PDF

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments (Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향)

  • Jeong, Yeong Jae;Park, Jin Sung;Bang, Hye Rin;Lee, Soon Gi;Choi, Jong Kyo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.373-383
    • /
    • 2021
  • The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple (다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가)

  • Park, GyunHo;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.868-873
    • /
    • 2019
  • In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.

Decontamination of simulated radioactive metal waste by modified electrolytic Process with neutral salt electrolytes (개선된 중성염 진해공정을 이용한 모의 방사성 금속폐기물의 제염)

  • Lee, Ji-Hoon;Yuk, Wan-Yi;Yang, Ho-Yeon;Ha, Jong-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Conventional and modified electrolytic decontamination experiment were performed in the 1.7 M solution of sodium sulfate and sodium nitrate tot decontamination of carbon steel as the simulated metal wastes which have been produced in large amounts from nuclear power plants. Anode ant cathode were used as inconel and titanium respective. The reaction time and temperature were 1 hr and $25^{\circ}C$ The analyses were performed of the characteristics such as weight loss arid thickness change of metal waste. suspended solid in electrolyte and SEM observation. In modified electrolyte decontamination system with increased current density ranged from 0.1 to $0.6A/cm^2$, the metal waste showed thickness changes of $0.48{\pm}0.005$ to $67.7{\pm}0.02{\mu}m$ in 1.7 M sodium sulfate and those of $0.06{\pm}0.005$ to $17.7{\pm}0.05{\mu}m$ in sodium nitrate. Metal waste in modified electrolyte decontamination system showed the thickness change of $9.8{\pm}0.01{\mu}m$ while it reacted up to $3.7{\pm}0.03{\mu}m$ in conventional system with $0.3 A/cm^2$ of current density and 1.7 M sodium sulfate. Decontamination efficiencies of modified electrolytic process ate much hither than that of conventional electrolytic process when both are applied to metal waste.

Calpain Protease-dependent Post-translational Regulation of Cyclin D3 (Calpain protease에 의한 cyclin D3의 post-translation조절)

  • Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Cyclin D is a member of the cyclin protein family, which plays a critical role as a core member of the mammalian cell cycle machinery. D-type cyclins (D1, D2, and D3) bind to and activate the cyclin-dependent kinases 4 and 6, which can then phosphorylate the retinoblastoma tumor suppressor gene products. This phosphorylation in turn leads to release or derepression of E2F transcription factors that promote progression from the G1 to S phase of the cell cycle. Among the D-type cyclins, cyclin D3 encoded by the CCND3 gene is one of the least well studied. In the present study, we have investigated the biochemistry of the proteolytic mechanism that leads to loss of cyclin D3 protein. Treatment of human prostate carcinoma PC-3-M cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. Additionally, using inhibitors for various proteolytic systems, we show that degradation of cyclin D3 protein involves the $Ca^{2+}$-activated neutral protease calpain. Moreover, the half-life of cyclin D3 protein half-life increased by at least 10-fold in PC-3M cells in response to the calpain inhibitor. We have also demonstrated that the transient expression of the calpain inhibitor calpastatin increased cyclin D3 protein in serum-starved NIH 3T3 cells. These data suggested that the function of cyclin D3 is regulated by $Ca^{2+}$-dependent protease calpain.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Modeling Study on Deterioration of Stone Monuments Constructed with Silicate Rock by Acid Rain (규산염질 암석으로 구성된 석조문화재의 산성비에 의한 손상 임상연구)

  • Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • The artificial rains having different pH and weathering simulation test were performed for Gyeongju Namsan granite and dacitic tuff to predict the role of acid rain in the deterioration of stone monuments located in Gyeongju area. The pH 4.0 rain reacted with the fresh granite showed near neutral pH at the early stage due to the hydrolysis of minerals in the rock surface. But the pH changed back to the initial pH in the later stage. On the other hand, the pH 5.6 rain showed the neutral pH for a longer time than the experiment with pH 4.0 rain, reflecting slower reaction of minerals due to the weaker acidity. When the pH 5.6 rain reacted with the weathered granite, the water showed neutral pH longer than the case of the fresh granite. The similar tendencies were observed in the experiment of dacitic tuff, except that the pH 4.0 rain reacted with dacitic tuff took a longer time to go back to the initial pH as compared with the case of granite. These results may due to the differences in mineral composition and texture of two rocks. Dacitic tuff contains more fine-grained or glassy groundmass than granite and is more reactive with weaker acid rain. It was predicted that the weight loss and strength decrease rate of dacitic tuff would be approximatetly twice relative to those of granite in the same experimental environment.

Prelectin Histochemistry for Effects of N-Nitrosodimethylamine on Glycoconjugates in the Rat Lingual Glands (N-Nitrosodimethylamine이 흰쥐 설선의 Glycoconjugates에 미치는 영향에 대한 Prelectin 조직화학)

  • 조운복;조기진
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.509-519
    • /
    • 1998
  • The effect of N-Nitrosodimethylamine(NDMA) on the glycoconjugates of rat lingual salivary gland was examined by prelectin histochemical methods. Sprague-Dawley rats weighing about 250-300g were divided into control and experimental groups. Each rat of experimental groups was administrated NDMA(17mg/kg) orally and sacrificed in 3, 6, 12, 24, 48, 72, 96 and 120 hours after NDMA administration. The regional differences and change of glycoco-njugates were elucidated by prelectin histochemical methods, such as periodic acid Schiff's(PAS) reaction, alcian blue (AB) pH 2.5, AB pH 0.4, AB pH 2.5-PAS, aldehyde fuchsin(AF) pH 1.7-AB pH 2.5 and high iron diamine(HID)-AB pH 2.5 staining. The major morphological changes in the von Ebner’s gland of NDMA administrated groups were withering and des-truction of serous acini, diminution and disappearance of cytoplasmic granules and vacuolation in cytoplasm of serous cells, and mucinous changes of duct epithelial cells. These changes were noted in NDMA administrated groups for 12 to 72 hours. In the lingual mucous gland of NDMA administrated groups, the major morphological changes were enlargement, fusion and destruction of mucous acini, loss of cytoplasmic granules and vacuolated generation in cytop-lasm of mucous cells, and mucinous change of duct epithelial cells. These changes were severe in NDMA administra-ted groups for 12 to 72 hours. In NDMA administrated groups of lingual von Ebner's gland for 12 and 72 hours, the neutral glycoconjugates be-come diminished remarkably compared to the control group. The decreased amount of neutral glycoconjugates tended to be gradually recovered from 96 hours group. The acidic glycoconjugates which were not detected in control group were found in a few serous cells of these gland of NDMA administrated groups for 6 to 48 hours and 120 ho-urs. The remarkable decrease of neutral and acidic glycoconjugates was observed in the lingual mucous glands 3, 24 and 48 hours after NDMA administration, and the striking decrease of acidic glycoconjugates was found in 72 hours groups. Among acidic glycoconjugates, sulfated glycoconjugates tended to decrease in NDMA administrated groups for 72 hours, while sialic glycoconjugates were increased in NDMA administrated groups for 3, 12 and 48 hours.

  • PDF

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.