Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.1.1

Calpain Protease-dependent Post-translational Regulation of Cyclin D3  

Hwang, Won Deok (Department of Internal Medicine, Dongeui University College of Korean Medicine)
Choi, Yung Hyun (Anti-Aging Research Center, Dongeui University)
Publication Information
Journal of Life Science / v.25, no.1, 2015 , pp. 1-7 More about this Journal
Abstract
Cyclin D is a member of the cyclin protein family, which plays a critical role as a core member of the mammalian cell cycle machinery. D-type cyclins (D1, D2, and D3) bind to and activate the cyclin-dependent kinases 4 and 6, which can then phosphorylate the retinoblastoma tumor suppressor gene products. This phosphorylation in turn leads to release or derepression of E2F transcription factors that promote progression from the G1 to S phase of the cell cycle. Among the D-type cyclins, cyclin D3 encoded by the CCND3 gene is one of the least well studied. In the present study, we have investigated the biochemistry of the proteolytic mechanism that leads to loss of cyclin D3 protein. Treatment of human prostate carcinoma PC-3-M cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. Additionally, using inhibitors for various proteolytic systems, we show that degradation of cyclin D3 protein involves the $Ca^{2+}$-activated neutral protease calpain. Moreover, the half-life of cyclin D3 protein half-life increased by at least 10-fold in PC-3M cells in response to the calpain inhibitor. We have also demonstrated that the transient expression of the calpain inhibitor calpastatin increased cyclin D3 protein in serum-starved NIH 3T3 cells. These data suggested that the function of cyclin D3 is regulated by $Ca^{2+}$-dependent protease calpain.
Keywords
Calpain; calpastatin; cyclin D3; proteolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoshida, H., Murachi, T. and Tsukahara, I. 1985. Distribution of calpain I, calpain II, and calpastatin in bovine lens. Invest Ophthalmol. Vis. Sci. 26, 953-956.
2 Roulston, A., Reinhard, C., Amiri, P. and Williams, L. T. 1998. Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J. Biol. Chem. 273, 10232-10239.   DOI
3 Santella, L., Kyozuka, K., De Riso, L. and Carafoli, E. 1998. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium. 23, 123-130.   DOI
4 Wasko, B. M., Dudakovic, A. and Hohl, R. J. 2011. Bisphosphonates induce autophagy by depleting geranylgeranyl diphosphate. J. Pharmacol. Exp. Ther. 337, 540-546.   DOI
5 Wojtkowiak, J. W., Sane, K. M., Kleinman, M., Sloane, B. F., Reiners, J. J. Jr. and Mattingly, R. R. 2011. Aborted autophagy and nonapoptotic death induced by farnesyl transferase inhibitor and lovastatin. J. Pharmacol. Exp. Ther. 337, 65-74.   DOI
6 Yamada, M., Banno, Y., Takuwa, Y., Koda, M., Hara, A. and Nozawa, Y. 2004. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells. Biochem. J. 378, 649-656.   DOI
7 Yoshimura, N., Tsukahara, I. and Murachi, T. 1984. Calpain and calpastatin in porcine retina. Identification and action on microtubule-associated proteins. Biochem. J. 223, 47-51.   DOI
8 Lee, S. J., Ha, M. J., Lee, J., Nguyen, P., Choi, Y. H., Pirnia, F., Kang, W. K., Wang, X. F., Kim, S. J. and Trepel, J. B. 1998. Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway induces p53-independent transcriptional regulation of p21(WAF1/CIP1) in human prostate carcinoma cells. J. Biol. Chem. 273, 10618-10623.   DOI
9 Lim, S. and Kaldis, P. 2013. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 140, 3079-3093.   DOI   ScienceOn
10 Mani, A. and Gelmann, E. P. 2005. The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol. 23, 4776-4789.   DOI
11 Pomerantz, Y. and Dekel, N. 2013. Molecular participants in regulation of the meiotic cell cycle in mammalian oocytes. Reprod. Fertil. Dev. 25, 484-494.
12 McKenney, J. M. 1998. Lovastatin: a new cholesterol-lowering agent. Clin. Pharm. 7, 21-36.
13 Meinel, F. G., Mandl-Weber, S., Baumann, P., Leban, J. and Schmidmaier, R. 2010. The novel, proteasome-independent NF-kappaB inhibitor V1810 induces apoptosis and cell cycle arrest in multiple myeloma and overcomes NF-kappaB-mediated drug resistance. Mol. Cancer. Ther. 9, 300-310.
14 Muşat, M., Vax, V. V., Borboli, N., Gueorguiev, M., Bonner, S., Korbonits, M. and Grossman, A. B. 2004. Cell cycle dysregulation in pituitary oncogenesis. Front. Horm. Res. 32, 34-62.   DOI
15 Rao, S., Lowe, M., Herliczek, T. W. and Keyomarsi, K. 1998. Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17, 2393-2402.   DOI
16 Roos-Mattjus, P. and Sistonen, L. 2004. The ubiquitin-proteasome pathway. Ann. Med. 36, 285-295.   DOI
17 Friedrich, P. 2004. The intriguing Ca2+ requirement of calpain activation. Biochem. Biophys. Res. Commun. 323, 1131-1133.   DOI
18 Diaz-Padilla, I., Siu, L. L. and Duran, I. 2009. Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Invest. New Drugs. 27, 586-594.   DOI
19 Errico, A., Deshmukh, K., Tanaka, Y., Pozniakovsky, A. and Hunt, T. 2010. Identification of substrates for cyclin dependent kinases. Adv. Enzyme Regul. 50, 375-399.   DOI
20 Farmer, J. A. and Torre-Amione, G. 2000. Comparative tolerability of the HMG-CoA reductase inhibitors. Drug. Saf. 23, 197-213.   DOI
21 Graf, F., Mosch, B., Koehler, L., Bergmann, R., Wuest, F. and Pietzsch, J. 2010. Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging. Mini. Rev. Med. Chem. 10, 527-539.   DOI
22 Kim, J. S., Pirnia, F., Choi, Y. H., Nguyen, P. M., Knepper, B., Tsokos, M., Schulte, T. W., Birrer, M. J., Blagosklonny, M. V., Schaefer, O., Mushinski, J. F. and Trepel, J. B. 2000. Lovastatin induces apoptosis in a primitive neuroectodermal tumor cell line in association with RB down-regulation and loss of the G1 checkpoint. Oncogene 19, 6082-6090.   DOI
23 Konstantinova, I. M., Tsimokha, A. S. and Mittenberg, A. G. 2008. Role of proteasomes in cellular regulation. Int. Rev. Cell Mol. Biol. 267, 59-124.   DOI
24 Bertipaglia, I. and Carafoli, E. 2007. Calpains and human disease. Subcell. Biochem. 45, 29-53.   DOI
25 Bogner, C., Schneller, F., Hipp, S., Ringshausen, I., Peschel, C. and Decker, T. 2003. Cycling B-CLL cells are highly susceptible to inhibition of the proteasome: involvement of p27, early D-type cyclins, Bax, and caspase-dependent and -independent pathways. Exp. Hematol. 31, 218-225.   DOI
26 Huo, L. J., Fan, H. Y., Zhong, Z. S., Chen, D. Y., Schatten, H. and Sun, Q. Y. 2004. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 121, 1275-1287.   DOI
27 Chen, F. Z. and Zhao, X. K. 2013. Ubiquitin-proteasome pathway and prostate cancer. Onkologie 36, 592-596.   DOI
28 Choi, Y. H., Lee, S. J., Nguyen, P., Jang, J. S., Lee, J., Wu, M. L., Takano, E., Maki, M., Henkart, P. A. and Trepel, J. B. 1997. Regulation of cyclin D1 by calpain protease. J. Biol. Chem. 272, 28479-28484.   DOI