Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.6.373

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments  

Jeong, Yeong Jae (Department of Advanced Materials Engineering, Sunchon National University)
Park, Jin Sung (Department of Advanced Materials Engineering, Sunchon National University)
Bang, Hye Rin (Department of Advanced Materials Engineering, Sunchon National University)
Lee, Soon Gi (POSCO Technical Research Laboratories)
Choi, Jong Kyo (POSCO Technical Research Laboratories)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.20, no.6, 2021 , pp. 373-383 More about this Journal
Abstract
The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.
Keywords
High Mn steel; Cr; Flow-accelerated corrosion; Corrosion scale; Electrochemical corrosion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. H. Refait, M. Abdelmoula, and J. M. R. Genin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, 40, 1547 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00066-3   DOI
2 F. Lantelme, A. Derja, and N. Kumagai, Electroreduction of Ni2+ and Fe2+ in a fused electrolyte formation of a two-component alloy and the role of the underpotential deposition, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 248, 369 (1988). Doi: https://doi.org/10.1016/0022-0728(88)85097-6   DOI
3 M. M. Stack and G. H. Abdulrahman, Mapping erosion-corrosion of carbon steel in oil-water solution: Effect of velocity and applied potential, Wear, 274-275, 401 (2012). Doi: https://doi.org/10.1016/j.wear.2011.10.008   DOI
4 G. Park, S. Jeong, H. Kang, and C. Lee, Improvement of circumferential ductility by reducing discontinuities in a high-Mn TWIP steel weldment, Materials Characterization, 139, 293 (2018). Doi: https://doi.org/10.1016/j.matchar.2018.03.009   DOI
5 S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of alloying elements (Cu, Al, Si) on the electrochemical corrosion behaviors of TWIP steel in a 3.5% NaCl solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300   DOI
6 C. Wagner and W. Traud, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702   DOI
7 M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the Shape of polarization curves, Journal of the electrochemical society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496   DOI
8 D. A. Lopez, S. N. Simison, and S. R. de Sanchez, Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure, Corrosion Science, 47, 735 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.07.010   DOI
9 Y. Mehta, S. Trivedi, K. Chandra, and P. S. Mishra, Effect of silicon on the corrosion behavior of powder-processed phosphoric irons, Journal of Minerals and Materials Characterization and Engineering, 9, 855 (2010). Doi: https://doi.org/10.4236/jmmce.2010.910062   DOI
10 M. B. Kannan, R. K. S. Raman, and S. Khoddam, Comparative studies on the corrosion properties of a Fe-MnAl-Si steel and an interstitial-free steel, Corrosion Science, 50, 2879 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.07.024   DOI
11 S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579   DOI
12 J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates, Electrochemical Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4   DOI
13 S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.1016/j.corsci.2008.07.024   DOI
14 A. L. Morales, C. A. B. Meneses, F. Jaramillo, C. Arroyave, and J. M. Greneche, Properties of goethite grown under the presence of Cr3+, Cu2+ and Mn2+ ions, Hyperfine Interactions, 148-149, 135 (2003). Doi: https://doi.org/10.1023/B:HYPE.0000003774.23704.52   DOI
15 S. G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, Journal of Physical and Chemical Reference Data, 18, 1 (1989). Doi: https://doi.org/10.1063/1.555839   DOI
16 L. Zeng, G. A. Zhang, and X. P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corrosion Science, 85, 318 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.045   DOI
17 R. C. Barik, J. A. Wharton, R. J. K. Wood, and K. R. Stokes, Electro-mechanical interactions during erosion-corrosion, Wear, 267, 1900 (2009). Doi: https://doi.org/10.1016/j.wear. 2009.03.011   DOI
18 G. W. Park, H. Jo, M. Park, B. J. Kim, W. Lee, S. Shin, S. S. Park, Y. S. Ahn, and J. B. Jeon, Effect of heat treatment and drawing on high-manganese steel pipe welded by gas tungsten arc, Metals, 10, 1366 (2020). Doi: https://doi.org/10.3390/met10101366   DOI
19 Y. Hyun and H. Kim, Effects of alloying elements on the corrosion properties of high strength steel in a sour environment, Journal of the Korean Institute of Metals and Material, 54, 885 (2016). Doi: https://doi.org/10.3365/KJMM.2016.54.12.885   DOI
20 J. A. V. Orman and K. L. Crispin, Diffusion in Oxides, Reviews in Mineralogy and Geochemistry, 72, 757 (2010). Doi: https://doi.org/10.2138/rmg.2010.72.17   DOI
21 S. U. Koh, H. G. Jung, and K. B. Kang, Effect of nonmetallic inclusion and hot rolling process parameters on hydrogen induced cracking of linepipe steels, Journal of Korea Institute of Metals and Materials, 46, 257 (2008). https://www.koreascience.or.kr/article/JAKO200836439080970.page
22 X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment, Corrosion Science, 160, 1081671 (2019). Doi: https://doi.org/10.1016/J.CORSCI.2019.108167   DOI
23 Y. J. Jeong, M.S. Thesis, pp. 13-17, Sunchon National University, Suncheon (s).
24 S. Fajardo, I. Llorente, J. A. Jimenez, J. M. Bastidas, and D. M. Bastidas, Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution, Corrosion Science, 154, 246 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.04.026   DOI
25 X. M. Zhu and Y. S. Zhang, Investigation of the electrochemical corrosion behavior and passive film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr Alloys in aqueous solutions corrosion, Corrosion, 54, 3 (1998). Doi: https://doi.org/10.5006/1.3284826   DOI
26 K. Asami and M. Kikuchi, Characterization of rust layers on weathering steels air-exposed for a long period, Materials Transactions, 43, 2818 (2002). Doi: https://doi.org/10.2320 /matertrans.43.2818   DOI
27 Y. J. Jeong, S. O. Kim, J. S. Park, J. W. Lee, J. K. Hwang, S. G. Lee, J. K. Choi, and S. J. Kim, Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion, Materials Degradation, 5, 47 (2021). Doi: https://doi.org/10.1038/s41529-021-00195-0   DOI
28 Y. H. Lee, H. M. Lee, Y. I. Kim, and S. H. Nahm, Mechanical degradation of API X65 pipeline steel by exposure of hydrogen gas, Metals and Materials International, 17, 389 (2011). Doi: https://doi.org/10.1007/s12540-011-0614-1   DOI
29 L. A. D. Oliveira, O. V. Correa, D.J. D. Santos, A. A. Z. Paez, M. C. L. D. Oliveira, and R. A. Antunes, Effect of silicate-based films on the corrosion behavior of the API 5L X80 pipeline steel, Corrosion Science, 139, 21 (2018). Doi: https://doi.org/10.1016/j.corsci.2018.04.035   DOI