• Title/Summary/Keyword: Neuroprotective effect

Search Result 560, Processing Time 0.025 seconds

Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial p-AMPK/Nrf2/HO-1 Signaling Pathways

  • Park, Jin-Sun;Leem, Yea-Hyun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Parkinson's disease is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta. In the present study, we investigated whether ${\beta}-Lapachone$ (${\beta}-LAP$), a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia avellanedae), elicits neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. ${\beta}-LAP$ reduced the tyrosine hydroxylase (TH)-immunoreactive fiber loss induced by MPTP in the dorsolateral striatum, and alleviated motor dysfunction as determined by the rotarod test. In addition, ${\beta}-LAP$ protected against MPTP-induced loss of TH positive neurons, and upregulated B-cell lymphoma 2 protein (Bcl-2) expression in the substantia nigra. Based on previous reports on the neuroprotective role of nuclear factor-E2-related factor-2 (Nrf2) in neurodegenerative diseases, we investigated whether ${\beta}-LAP$ induces upregulation of the Nrf2-hemeoxygenae-1 (HO-1) signaling pathway molecules in MPTP-injected mouse brains. Western blot and immunohistochemical analyses indicated that ${\beta}-LAP$ increased HO-1 expression in glial fibrillary acidic protein-positive astrocytes. Moreover, ${\beta}-LAP$ increased the nuclear translocation and DNA binding activity of Nrf2, and the phosphorylation of upstream adenosine monophosphate-activated protein kinase (AMPK). ${\beta}-LAP$ also increased the localization of p-AMPK and Nrf2 in astrocytes. Collectively, our data suggest that ${\beta}-LAP$ exerts neuroprotective effect in MPTP-injected mice by upregulating the p-AMPK/Nrf2/HO-1 signaling pathways in astrocytes.

Effect of Ramulus et uncus uncariae on Glucose Oxidase-Induced Toxicity in Cultured Cerebral Neurons (조구등이 Glucose Oxidase로 손상된 대뇌신경세포에 미치는 효과)

  • Kim Hyeong Soo;Lee Yong Suk;Oh Suk Kyu;Lee Kang Chang;Lee Geon Mok;Lee Jeong;Lee Sang Bork;Kim Jong Ho;Yu Jun Ki;Kang Young Seong;Kim Sung Soo;Song Ho Jun;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1016-1019
    • /
    • 2002
  • To examine the cytotoxic effect of glucose oxidase(GO) in cultured mouse cerebral neurons, cytotoxicity was measured by MTT assay after cultured nerve cells were incubated for 3 hours in the media containing 1 ~ 60mU/ml concentrations of GO. In addition, the neuroprotective effect of Ramulus et uncus uncariae(REUU) was determined by MTT assay in these cultrures. Cell viability was remarkably decreased in a dose- and time-dependent manner after cultured mouse cerebral neurons were exposed to 30mU/ml GO for 3 hours. In the neuroprotective effect of REUU on GO-induced toxicity, REUU blocked the GO-mediated neurotoxicity in these cultures. From above the results, it suggests that GO is toxic in cultured mouse cerebral neurons and selective herb extract such as REUU is effective in prevetion of the neurotoxicity induced by GO.

Effect of Codonopsis lanceolata with Steamed and Fermented Process on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Ko, Hyun-Jeong;Kim, Ji Seon;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.405-410
    • /
    • 2013
  • Codonopsis lanceolata (Campanulaceae) traditionally have been used as a tonic and to treat patients with lung abscesses. Recently, it was proposed that the extract and some compounds isolated from C. lanceolata reversed scopolamine-induced memory and learning deficits. The purpose of this study was to evaluate the improvement of cognitive enhancing effect of C. lanceolata by steam and fermentation process in scopolamine-induced memory impairment mice models by passive avoidance test and Morris water maze test. The extract of C. lanceolata or the extract of steamed and fermented C. lanceolata (SFCE) was orally administered to male mice at the doses of 100 and 300 mg/kg body weight. As a result, mice treated with steamed and fermented C. lanceolata extract (SFCE) (300 mg/kg body weight, p.o.) showed shorter escape latencies than those with C. lanceolata extract or the scopolamine-administered group in Morris water maze test. Also, it exerted longer step-through latency time than scopolamine treated group in passive avoidance test. Furthermore, neuroprotective effect of SFCE on glutamate-induced cytotoxicity was assessed in HT22 cells. Only SFCE-treated cells showed significant protection at 500 ${\mu}g/ml$. Interestingly, steamed C. lanceolata with fermentation contained more phenolic acid including gallic acid and vanillic acid than original C. lanceolata. Collectively, these results suggest that steam and fermentation process of C. lanceolata increased cognitive enhancing activity related to the memory processes and neuroprotective effect than original C. lanceolata.

Effect of Steamed Codonopsis lanceolata on Spatial Learning and Memory in Mice (증숙 더덕 추출물의 인지능력 개선 효과)

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Ko, Hyun-Jeong;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • Alzheimer's disease is progressive neurodegenerative disorder by the loss of memory and learning abilities. Codonopsis lanceolata (C. lanceolata) is traditional medicinal plant used for the treatment of inflammatory diseases. The aim of study was to evaluate the effect of steamed C. lanceolata on scopolamine-induced memory impairment in the Morris water maze test and passive avoidance test. In addition, this study investigated the neuroprotective effects of steamed C. lanceolata on glutamate-induced cell death in HT22 cells using MTT assay. The results showed that steamed C. lanceolata (500 mg/kg body weight, p.o.) reversed spatial memory impairment by scopolamine in Morris water maze test and passive avoidance test. Steamed C. lanceolata attenuated memory impairment by scopolamine compared with common C. lanceolata. In addition, administration of steamed C. lanceolata significantly also reduced cell death. We suggest that steaming process more improve cognitive enhancing and neuroprotective effect of C. lanceolata than common C. lanceolata.

Neuroprotective Effects of Extracts from Diospyros kaki L. Peel (단감(Diospyros Kaki L.)껍질 추출물의 신경세포 보호 효과)

  • Lee, Mi-Ra;Moon, Seong-Hee;Choi, Ae-Ran;Lee, Seung-Cheol;Ahn, Kwnag-Hwan;Park, Hae-Ryong
    • Korean journal of food and cookery science
    • /
    • v.27 no.4
    • /
    • pp.67-73
    • /
    • 2011
  • This study was performed to assess the neuroprotective effects of methanolic extracts from sweet persimmon peel (PPE) against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. The neuroprotective effects of PPE in N18-RE-105 cells were measured using the MTT reduction assay, LDH release assay, and phase-contrast microscopy. The results of the MTT reduction assay showed that treating cells with 500 ${\mu}g/ml$ PPE resulted in cell viability of 66.9%. Additionally, the morphological changes and the results of the LDH release assay showed that glutamate-induced damage to nerve cells was strongly inhibited by PPE. GSH content of N18-RE-105 cells was 3.5 ${\mu}M$ compared to that of the control, whereas pretreatment with 500 ${\mu}g/ml$ PPE increased GSH content by 4.7 ${\mu}M$. PPE was fractionated with hexane, and that layer had the highest neuroprotective effects in glutamate-stressed N18-RE-105 cells. In conclusion, our data showed that glutamate potentiated the effects of N18-RE-105 cell death by a mechanism involving oxidative stress. Therefore, PPE may be a potential candidate for prevention and therapy of neurodegenerative diseases.

Neuroprotective Effect of Hwangryunhaedok-tang on the Brain Ischemia Induced by Four-Vessel Occlusion in Rats (황련해독탕(黃連解毒湯)의 4-VO로 유발한 흰쥐뇌허혈에 대한 신경보호효과)

  • 이민정;김영옥;이강진;유영법;김선여;김성수;김호철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.161-168
    • /
    • 2002
  • Objectives: Hwangryunhaedok-tang (Huang-lian-jie-du-tang, HRHDT, 黃連解毒湯) is a traditional Korean herbal medicine that is formulated with Coptidis Rhizoma, Phellodendri Cortex, Scutellariae Radix and Gardeniae Fructus. HRHDT is cold (寒) and bitter (苦) in nature and has general properties of clearing heat and detoxifying (淸熱解毒), strengthening the stomach and settling the liver (健胃平肝), and reducing inflammation, fever and swelling. This formula can prevent and treat artherosclerosis, hyperplasia of the endothelium, cerebral fluid circulation, cerebral vascular deterioration through aging, impairment of neurotransmitters, or disruption of the functioning of the cerebral cortex following infection or trauma. The purpose of the study reported here was to determine the neuroprotective effect of HRHDT on global ischemia induced by 4-vessel occlusion in Wistar rats. Methods: HRHDT extract was lyophilized after extraction with 85% methanol and 100% water. Rats were induced to 10 minutes of forebrain ischemia by 4-vessel occlusion (4-VO) and reperfused again. HRHDT was administered with a dose of 100 mg/kg, and 500 mg/kg of 85% methanol extracts and 100 mg/kg of 100% water extracts, respectively, at 0 min and 90 min after 4-VO. Rats were killed at 7 days after ischemia and the number of CA1 pyramidal neurons was counted in hippocampal sections stained with cresyl violet. Results: Body temperature of animals showed no significant difference between saline-treated groups and HRHDT extracts-treated groups until 5 hours of reperfusion. This result indicated that neuroprotective effects of HRHDT extracts were not due to hypothermic effects. The administration of HRHDT showed a significant neuroprotective effect on hippocampal CA1 neurons at 7 days after ischemia compared to the saline-treated group (P<0.001). HRHDT methanol extracts of 100 mg/kg, 500 mg/kg and HRHDT water extracts of 100 mg/kg showed 88.5%, 98.3% and 95.1 % neuroprotection, respectively. Conclusions: The results of this study demonstrate that administration of HRHDT is highly effective in reducing neuronal damage in response to transient global cerebral ischemia. HRHDT may involve many mechanisms that might account for its high degree of efficacy. A number of factors including free radicals, glutamate, calcium overload, NO, and various cytokines have been proposed to have an important role in causing neuronal death after short periods of global ischemia. Further studies are needed to know the neuroprotective mechanisms of HRHDT.

  • PDF

Comparative studies of effects of manual acupuncture, invasive laser acupuncture and laser skin irradiation at the Heart Jeonggyeok acupoint on the focal ischemia induced by intraluminal filament insertion in rats (심정격(心正格) 혈위(穴位)에 시술한 침자(鍼刺)와 침습(侵襲)및 비침습(非侵襲) 레이저침요법(鍼療法)이 뇌허혈(腦虛血)에 미치는 영향(影響)에 대한 비교(比較) 연구(硏究))

  • Youn, Jeong-Young;Kim, Young-Sun;Youn, Dae-Hwan;Lee, Suk-Hee;Oh, Gwang-Hwan;Jeong, Sung-Ho;Na, Chang-Su
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.125-142
    • /
    • 2010
  • Objectives: The purpose of this study was to identify the effectiveness of neuronal activities for the acupuncture and laser acupuncture application. Methods: The subject were divided into 7 groups as control group without acupuncture, acupuncture treatment with tonify manipulation with the direction of channel at HT9, LR1(AT-A), acupuncture treatment with purge manipulation against the direction of channel at HT3, Kl10(AT-B), acupuncture treatment with tonify manipulation with the direction of channel at HT9, LR1 and purge manipulation against the direction of channel at HT3, KI10(AT-C), laser acupuncture treatment with red light 658 nm at HT9, LR1(LAT-A), laser acupuncture treatment with green light 532 nm at HT3, KI10(LAT-B), laser acupuncture treatment with red light 658 nm at HT9, LR1 and green light 532 nm at HT3, KI10(LAT-B). Antiapopotic effect of acupuncture was observed by Bax, Bcl-2 and cytochrome C. Neuroprotective effect of acupuncture was observed by cresyl violet and ChAT. Results: AT-A, AT-B, AT-C, LAT-A, LAT-B and LAT-C groups were significantly increased comparing the control groups in expression ChAT and in neuroprotective effect by cresyl violet. AT-A, AT-B, AT-C, LAT-A, LAT-B and LAT-C groups were significantly decreased comparing the control groups in expression Bax. AT-C, LAT-A, LAT-B and LAT-C groups were significantly increased comparing the control groups in expression Bcl-2. AT-A, AT-B, AT-C, LAT-A, LAT-B and LAT-C groups were significantly decreased comparing the control groups in Bax/Bcl-2 ratio. LAT-B and LAT-C groups were significantly decreased comparing the control groups in expression cytochrome C. Conclusions: The acupuncture with tonify and purge manipulation and laser acupuncture with red and green light could be effective for antiapopotic and neuroprotective effect in focal brain ischemia.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Neuroprotective Effect of Aloesin in a Rat Model of Focal Cerebral Ischemia

  • K.J. Jung;Lee, M.J.;E.Y. Cho;Y.S. Song;Lee, Y.H.;Park, Y.L.;Lee, Y.S.;C. Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.62-62
    • /
    • 2003
  • It is now convincing that free radical generation is involved in the pathophy siological mechanisms of ischemic stroke, particularly in ischemia-reperfusion injury. The present study, therefore, examined neuroprotective effect of aloesin isolated from Aloe vera, which was known to have antioxidative activity, in a rat model of transient focal cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of middle cerebral artery for 2 hr with a silicone-coated 4-0 nylon monofilament in male Sprague-Dawley rats under isoflurane anesthesia Aloesin (1, 3, 10, 30 and 50 mg/kg/injection) was administered intravenously 3 times at 0.5, 2 and 4 hr after onset of ischemia. Neurological score was measured 24 hr after onset of ischemia immediately before sacrifice. Seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride and infarct size was measured using a computerized image analyzer. Treatment with the close of 1 or 50 mg/kg did not significantly reduce infarct volume compared with the saline vehicle-treated control group. However, treatments with the closes of 3 and 10 mg/kg significantly reduced both infarct volume and edema by approximately 47% compared with the control group, producing remarkable behavioral recovery effect. Treatment with the close of 30 mg/kg also significantly reduced infarct volume to a lesser extent by approximately 33% compared with the control group, but produced similar degree of behavioral recovery effect. In addition, general pharmacological studies showed that aloesin was a quite safe compound. The results suggest that aloesin can serve as a lead chemical for the development of neuroprotective agents by providing neuroprotection against focal ischemic neuronal injury.

  • PDF

Production of ${\gamma}-Aminobutyric$ Acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and its Neuroprotective Effect on Neuronal Cells

  • Cho, Yu-Ran;Chang, Ji-Yoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • Lactic acid bacteria that accumulated ${\gamma}-aminobutyric$ acid (GABA) in culture medium were screened to identify strains with high GAB A-producing ability. One strain, MS, which was isolated from kimchi, showed the highest GABA-producing ability among the screened strains. MS was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination, Optimum culture conditions for GABA production were determined: MRS broth containing 5% MSG, 1% NaCl, and 1% glucose, at an initial pH of 5.0, the incubation temperature at $30^{\circ}C$ for 36 h. Under these conditions, MS produced GABA at a concentration of 251 mM with a 94% GABA conversion rate. Moreover, culture extracts of Lb. buchneri MS partially or completely protected neuronal cells against neurotoxicantinduced cell death.