DOI QR코드

DOI QR Code

Effect of Codonopsis lanceolata with Steamed and Fermented Process on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Yun, Bo-Ra (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Lee, Jiwoo (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Eom, Min Rye (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University) ;
  • Kim, Ji Seon (Department of Medical Biomaterials Engineering, College of Biomedical Science) ;
  • Lee, Hyeon Yong (Department of Teaics, Seowon University) ;
  • Park, Dong-Sik (Functional food & Nutrition Division, Department of Agrofood Resources) ;
  • Chung, Hee-Chul (Newtree CO., LTD.) ;
  • Chung, Jae Youn (Newtree CO., LTD.) ;
  • Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science)
  • Received : 2013.06.28
  • Accepted : 2013.09.02
  • Published : 2013.09.30

Abstract

Codonopsis lanceolata (Campanulaceae) traditionally have been used as a tonic and to treat patients with lung abscesses. Recently, it was proposed that the extract and some compounds isolated from C. lanceolata reversed scopolamine-induced memory and learning deficits. The purpose of this study was to evaluate the improvement of cognitive enhancing effect of C. lanceolata by steam and fermentation process in scopolamine-induced memory impairment mice models by passive avoidance test and Morris water maze test. The extract of C. lanceolata or the extract of steamed and fermented C. lanceolata (SFCE) was orally administered to male mice at the doses of 100 and 300 mg/kg body weight. As a result, mice treated with steamed and fermented C. lanceolata extract (SFCE) (300 mg/kg body weight, p.o.) showed shorter escape latencies than those with C. lanceolata extract or the scopolamine-administered group in Morris water maze test. Also, it exerted longer step-through latency time than scopolamine treated group in passive avoidance test. Furthermore, neuroprotective effect of SFCE on glutamate-induced cytotoxicity was assessed in HT22 cells. Only SFCE-treated cells showed significant protection at 500 ${\mu}g/ml$. Interestingly, steamed C. lanceolata with fermentation contained more phenolic acid including gallic acid and vanillic acid than original C. lanceolata. Collectively, these results suggest that steam and fermentation process of C. lanceolata increased cognitive enhancing activity related to the memory processes and neuroprotective effect than original C. lanceolata.

Keywords

References

  1. Bains, J. S. and Shaw, C. A. (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Brain Res. Rev. 25, 335-358. https://doi.org/10.1016/S0165-0173(97)00045-3
  2. Ban, J. Y., Nguyen, H. T., Lee, H. J., Cho, S. O., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. and Seong, Y. H. (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 31, 149-153. https://doi.org/10.1248/bpb.31.149
  3. Brion, J. P. (1998) Neurofibrillary tangles and Alzheimer's disease. Eur. Neurol. 40, 130-140. https://doi.org/10.1159/000007969
  4. Brookmeyer, R., Gray, S. and Kawas, C. (1998) Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88,1337-1342. https://doi.org/10.2105/AJPH.88.9.1337
  5. Byeon, S. E., Choi, W. S., Hong, E. K., Lee, J., Rhee, M. H., Park, H. J. and Cho, J. Y. (2009) Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch. Pharm. Res. 32, 813-822. https://doi.org/10.1007/s12272-009-1601-7
  6. Coyle, J. T., Price, D. L. and DeLong, M. R. (1983) Alzheimer's disease: a disorder of cortical cholinergic innervations. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
  7. Flood, J. F. and Cherkin, A. (1986) Scopolamine effects on memory retention in mice: a model of dementia? Behav. Neural Biol. 45, 169-184. https://doi.org/10.1016/S0163-1047(86)90750-8
  8. Francis, P. T., Palmer, A. M., Snape, M. and Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137-147. https://doi.org/10.1136/jnnp.66.2.137
  9. Friedman, E., Lerer, B. and Kuster, J. (1983) Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol. Biochem. Behav. 19, 309-312. https://doi.org/10.1016/0091-3057(83)90057-6
  10. Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
  11. Gan, M., Lin, S., Zhang, Y., Zi, J., Song, W., Hu, J., Chen, N., Wang, L., Wang, X. and Shi, J. (2011) Liposoluble constituents from Iodes cirrhosa and their neuroprotective and potassium channel-blocking activity. Zhongguo Zhong Yao Za Zhi 36, 1183-1189.
  12. Ghayur, M. N., Kazim, S. F., Rasheed, H., Khalid, A., Jumani, M. I., Choudhary, M. I. and Gilani, A. H. (2011) Identification of antiplatelet and acetylcholinesterase inhibitory constituents in betel nut. Zhong Xi Yi Jie He Xue Bao 9, 619-625. https://doi.org/10.3736/jcim20110607
  13. He, X., Zou, Y., Yoon, W. B., Park, S. J., Park, D. S. and Ahn, J. (2011) Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. J. Biosci. Bioeng. 112, 188-193. https://doi.org/10.1016/j.jbiosc.2011.04.003
  14. Hong, S. Y., Jeong, W. S. and Jun, M. (2012) Protective effects of the key compounds isolated from Corni fructus against ${\beta}$-amyloid-induced neurotoxicity in PC12 cells. Molecules 17, 10831-10845. https://doi.org/10.3390/molecules170910831
  15. Izquierdo, I. (1989) Mechanism of action of scopolamine as an amnestic. Trends Pharmacol. Sci. 10, 175-177. https://doi.org/10.1016/0165-6147(89)90231-9
  16. Jakala, P., Sirvio, J., Jolkkonen, J., Riekkinen, P. Jr, Acsady, L. and Riekkinen, P. (1992) The effects of p-chlorophenylalanine-induced serotonin synthesis inhibition and muscarinic blockade on the performance of rats in a 5-choice serial reaction time task. Behav. Brain Res. 51, 29-40. https://doi.org/10.1016/S0166-4328(05)80309-2
  17. Kumar, S., Prahalathan, P. and Raja, B. (2011) Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep. 16, 208-215. https://doi.org/10.1179/1351000211Y.0000000009
  18. Markesbery, W. R. (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23, 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6
  19. McGleenon, B. M., Dynan, K. B. and Passmore, A. P. (1999) Acetylcholinesterase inhibitors in Alzheimer's disease. Br. J. Clin. Pharmacol. 48, 471-480.
  20. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
  21. Murray, M. E., Knopman, D. S. and Dickson, D. W. (2007) Vascular dementia: clinical, neuroradiologic and neuropathologic aspects. Panminerva Med. 49, 197-207.
  22. Pyo, Y. H., Lee, T. -C. and Lee, Y. -C. (2005) Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70, S215-220.
  23. Puumala, T., Sirvio, J., Ruotsalainen, S. and Riekkinen P. Sr. (1996) Effects of St-587 and prazosin on water maze and passive avoidance performance of scopolamine-treated rats. Pharmacol. Biochem. Behav. 55, 107-115. https://doi.org/10.1016/0091-3057(95)02231-7
  24. Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882-1895.
  25. Richard, E., Schmand, B., Eikelenboom, P., Westendorp, R. G. and Van Gool, W. A. (2012) The Alzheimer myth and biomarker research in dementia. J. Alzheimers Dis. 31, S203-209.
  26. Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
  27. Tam, J. H. and Pasternak, S. H. (2012) Amyloid and Alzheimer's disease: inside and out. Can. J. Neurol. Sci. 39, 286-298. https://doi.org/10.1017/S0317167100013408
  28. Ushijima, M., Komoto, N., Sugizono, Y., Mizuno, I., Sumihiro, M., Ichikawa, M., Hayama, M., Kawahara, N., Nakane, T., Shirota, O., Sekita, S. and Kuroyanagi, M. (2008) Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56, 308-314. https://doi.org/10.1248/cpb.56.308
  29. Weon, J. B., Kim, C. Y., Yang, H. J. and Ma, C. J. (2012) Neuroprotective compounds isolated from Cynanchum paniculatum. Arch. Pharm. Res. 35, 617-621 https://doi.org/10.1007/s12272-012-0404-4
  30. Weon, J.B., Ma, J. Y., Yang, H. J. and Ma, C. J. (2011) Quantitative analysis of compounds in fermented Insampaedok-san and their neuroprotective activity in HT22 Cells. Nat. Prod. Sci. 17, 58-63.
  31. Weon, J. B., Yun, B. -R., Lee, J., Eom, M. R., Kim, J. S., Lee, H. Y., Park, D. S., Chung, H. -C., Chung, J. Y. and Ma, C. J. (2013) The ameliorating effect of steamed and fermented Codonopsis lanceolata on scopolamine-induced memory impairment in mice. Evid Based Complement. Alternat. Med. 2013, 464576.
  32. Whishaw, I. Q. (1989) Dissociating performance and learning deficits on spatial navigation tasks in rats subjected to cholinergic muscarinic blockade. Brain Res. Bull. 23, 347-358. https://doi.org/10.1016/0361-9230(89)90221-9
  33. Yang, H. J., Weon, J.B., Lee, B. and Ma, C. J. (2011) The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn. Mag. 7, 207-212. https://doi.org/10.4103/0973-1296.84234
  34. Yena, G. -C., Duhb, P. -D. and Tsaia. H. -L. (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79, 307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
  35. Yongxu, S. and Jicheng, L. (2008) Structural characterization of a water-soluble polysaccharide from the roots of Codonopsis pilosula and its immunity activity. Int. J. Biol. Macromol. 43, 279-282. https://doi.org/10.1016/j.ijbiomac.2008.06.009

Cited by

  1. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines vol.81, 2016, https://doi.org/10.1016/j.foodres.2015.12.026
  2. Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism vol.7, pp.10, 2015, https://doi.org/10.3390/nu7105395
  3. Cognitive-Enhancing Effect of Steamed and FermentedCodonopsis lanceolata: A Behavioral and Biochemical Study vol.2014, 2014, https://doi.org/10.1155/2014/319436
  4. Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.019
  5. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng vol.41, pp.1, 2017, https://doi.org/10.1016/j.jgr.2015.12.009
  6. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function vol.21, pp.4, 2016, https://doi.org/10.3746/pnf.2016.21.4.297
  7. Codonopsis lanceolata: A Review of Its Therapeutic Potentials vol.30, pp.3, 2016, https://doi.org/10.1002/ptr.5553
  8. The Application of Fermentation Technology in Traditional Chinese Medicine: A Review vol.48, pp.4, 2013, https://doi.org/10.1142/s0192415x20500433
  9. Optimizing the liquid‐state fermentation conditions used to prepare a new Shan‐Zha‐Ge‐Gen formula‐derived probiotic vol.45, pp.9, 2013, https://doi.org/10.1111/jfpp.15699