References
- Bains, J. S. and Shaw, C. A. (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Brain Res. Rev. 25, 335-358. https://doi.org/10.1016/S0165-0173(97)00045-3
- Ban, J. Y., Nguyen, H. T., Lee, H. J., Cho, S. O., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. and Seong, Y. H. (2008) Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 31, 149-153. https://doi.org/10.1248/bpb.31.149
- Brion, J. P. (1998) Neurofibrillary tangles and Alzheimer's disease. Eur. Neurol. 40, 130-140. https://doi.org/10.1159/000007969
- Brookmeyer, R., Gray, S. and Kawas, C. (1998) Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88,1337-1342. https://doi.org/10.2105/AJPH.88.9.1337
- Byeon, S. E., Choi, W. S., Hong, E. K., Lee, J., Rhee, M. H., Park, H. J. and Cho, J. Y. (2009) Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch. Pharm. Res. 32, 813-822. https://doi.org/10.1007/s12272-009-1601-7
- Coyle, J. T., Price, D. L. and DeLong, M. R. (1983) Alzheimer's disease: a disorder of cortical cholinergic innervations. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
- Flood, J. F. and Cherkin, A. (1986) Scopolamine effects on memory retention in mice: a model of dementia? Behav. Neural Biol. 45, 169-184. https://doi.org/10.1016/S0163-1047(86)90750-8
- Francis, P. T., Palmer, A. M., Snape, M. and Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137-147. https://doi.org/10.1136/jnnp.66.2.137
- Friedman, E., Lerer, B. and Kuster, J. (1983) Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol. Biochem. Behav. 19, 309-312. https://doi.org/10.1016/0091-3057(83)90057-6
- Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
- Gan, M., Lin, S., Zhang, Y., Zi, J., Song, W., Hu, J., Chen, N., Wang, L., Wang, X. and Shi, J. (2011) Liposoluble constituents from Iodes cirrhosa and their neuroprotective and potassium channel-blocking activity. Zhongguo Zhong Yao Za Zhi 36, 1183-1189.
- Ghayur, M. N., Kazim, S. F., Rasheed, H., Khalid, A., Jumani, M. I., Choudhary, M. I. and Gilani, A. H. (2011) Identification of antiplatelet and acetylcholinesterase inhibitory constituents in betel nut. Zhong Xi Yi Jie He Xue Bao 9, 619-625. https://doi.org/10.3736/jcim20110607
- He, X., Zou, Y., Yoon, W. B., Park, S. J., Park, D. S. and Ahn, J. (2011) Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. J. Biosci. Bioeng. 112, 188-193. https://doi.org/10.1016/j.jbiosc.2011.04.003
-
Hong, S. Y., Jeong, W. S. and Jun, M. (2012) Protective effects of the key compounds isolated from Corni fructus against
${\beta}$ -amyloid-induced neurotoxicity in PC12 cells. Molecules 17, 10831-10845. https://doi.org/10.3390/molecules170910831 - Izquierdo, I. (1989) Mechanism of action of scopolamine as an amnestic. Trends Pharmacol. Sci. 10, 175-177. https://doi.org/10.1016/0165-6147(89)90231-9
- Jakala, P., Sirvio, J., Jolkkonen, J., Riekkinen, P. Jr, Acsady, L. and Riekkinen, P. (1992) The effects of p-chlorophenylalanine-induced serotonin synthesis inhibition and muscarinic blockade on the performance of rats in a 5-choice serial reaction time task. Behav. Brain Res. 51, 29-40. https://doi.org/10.1016/S0166-4328(05)80309-2
- Kumar, S., Prahalathan, P. and Raja, B. (2011) Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep. 16, 208-215. https://doi.org/10.1179/1351000211Y.0000000009
- Markesbery, W. R. (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23, 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6
- McGleenon, B. M., Dynan, K. B. and Passmore, A. P. (1999) Acetylcholinesterase inhibitors in Alzheimer's disease. Br. J. Clin. Pharmacol. 48, 471-480.
- Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
- Murray, M. E., Knopman, D. S. and Dickson, D. W. (2007) Vascular dementia: clinical, neuroradiologic and neuropathologic aspects. Panminerva Med. 49, 197-207.
- Pyo, Y. H., Lee, T. -C. and Lee, Y. -C. (2005) Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70, S215-220.
- Puumala, T., Sirvio, J., Ruotsalainen, S. and Riekkinen P. Sr. (1996) Effects of St-587 and prazosin on water maze and passive avoidance performance of scopolamine-treated rats. Pharmacol. Biochem. Behav. 55, 107-115. https://doi.org/10.1016/0091-3057(95)02231-7
- Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882-1895.
- Richard, E., Schmand, B., Eikelenboom, P., Westendorp, R. G. and Van Gool, W. A. (2012) The Alzheimer myth and biomarker research in dementia. J. Alzheimers Dis. 31, S203-209.
- Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
- Tam, J. H. and Pasternak, S. H. (2012) Amyloid and Alzheimer's disease: inside and out. Can. J. Neurol. Sci. 39, 286-298. https://doi.org/10.1017/S0317167100013408
- Ushijima, M., Komoto, N., Sugizono, Y., Mizuno, I., Sumihiro, M., Ichikawa, M., Hayama, M., Kawahara, N., Nakane, T., Shirota, O., Sekita, S. and Kuroyanagi, M. (2008) Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56, 308-314. https://doi.org/10.1248/cpb.56.308
- Weon, J. B., Kim, C. Y., Yang, H. J. and Ma, C. J. (2012) Neuroprotective compounds isolated from Cynanchum paniculatum. Arch. Pharm. Res. 35, 617-621 https://doi.org/10.1007/s12272-012-0404-4
- Weon, J.B., Ma, J. Y., Yang, H. J. and Ma, C. J. (2011) Quantitative analysis of compounds in fermented Insampaedok-san and their neuroprotective activity in HT22 Cells. Nat. Prod. Sci. 17, 58-63.
- Weon, J. B., Yun, B. -R., Lee, J., Eom, M. R., Kim, J. S., Lee, H. Y., Park, D. S., Chung, H. -C., Chung, J. Y. and Ma, C. J. (2013) The ameliorating effect of steamed and fermented Codonopsis lanceolata on scopolamine-induced memory impairment in mice. Evid Based Complement. Alternat. Med. 2013, 464576.
- Whishaw, I. Q. (1989) Dissociating performance and learning deficits on spatial navigation tasks in rats subjected to cholinergic muscarinic blockade. Brain Res. Bull. 23, 347-358. https://doi.org/10.1016/0361-9230(89)90221-9
- Yang, H. J., Weon, J.B., Lee, B. and Ma, C. J. (2011) The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn. Mag. 7, 207-212. https://doi.org/10.4103/0973-1296.84234
- Yena, G. -C., Duhb, P. -D. and Tsaia. H. -L. (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79, 307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
- Yongxu, S. and Jicheng, L. (2008) Structural characterization of a water-soluble polysaccharide from the roots of Codonopsis pilosula and its immunity activity. Int. J. Biol. Macromol. 43, 279-282. https://doi.org/10.1016/j.ijbiomac.2008.06.009
Cited by
- Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines vol.81, 2016, https://doi.org/10.1016/j.foodres.2015.12.026
- Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism vol.7, pp.10, 2015, https://doi.org/10.3390/nu7105395
- Cognitive-Enhancing Effect of Steamed and FermentedCodonopsis lanceolata: A Behavioral and Biochemical Study vol.2014, 2014, https://doi.org/10.1155/2014/319436
- Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.019
- In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng vol.41, pp.1, 2017, https://doi.org/10.1016/j.jgr.2015.12.009
- A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function vol.21, pp.4, 2016, https://doi.org/10.3746/pnf.2016.21.4.297
- Codonopsis lanceolata: A Review of Its Therapeutic Potentials vol.30, pp.3, 2016, https://doi.org/10.1002/ptr.5553
- The Application of Fermentation Technology in Traditional Chinese Medicine: A Review vol.48, pp.4, 2013, https://doi.org/10.1142/s0192415x20500433
- Optimizing the liquid‐state fermentation conditions used to prepare a new Shan‐Zha‐Ge‐Gen formula‐derived probiotic vol.45, pp.9, 2013, https://doi.org/10.1111/jfpp.15699