• Title/Summary/Keyword: Neuroprotective activity

Search Result 294, Processing Time 0.031 seconds

Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과)

  • Su Young Shin;Jin-Woo Jeong;Chul Hwan Kim;Eun Jung Ahn;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF

Protective effect of Acer okamotoanum from oxidative stress in C6 glial cells (우산고로쇠의 항산화 및 신경세포에서의 산화적 스트레스 개선 효과)

  • Choi, Soo Yeon;Kim, Ji Hyun;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Radical scavenging effect and protective activity against oxidative stress of Acer okamotoanum were investigated. A. okamotoanum was extracted with methanol (MeOH) and then fractionated with n-BuOH, ethyl acetate (EtOAc), methylene chloride and n-hexane fractions. The MeOH extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl and superoxide radical scavenging activity. Among the MeOH extract and fractions, the EtOAc fraction showed the strongest radical scavenging activity. In addition, total phenolic and flavonoid contents of EtOAc fraction was higher than other extract and fractions. Furthermore, we investigated the neuroprotective effect of the MeOH extract and fractions from A. okamotoanum against oxidative stress under cellular system using C6 glial cell. The C6 glial cells showed a decrease in cell viability and high production of reactive oxygen species (ROS) by the treatment of amyloid $beta_{25-35}$ ($A{\beta}_{25-35}$). However, with the treatment of the MeOH extract and fractions, it significantly increased the cell viability and inhibited the overproduction of ROS by $A{\beta}_{25-35}$. In particular, the EtOAc fraction led to significantly increase the cell viability and decrease the generation of ROS against oxidative stress by $A{\beta}_{25-35}$. The current study indicated that A. okamotoanum demonstrated antioxidative and neuroprotective effects. In particular, the EtOAc fraction which attributed a strong protective activity against oxidative stress.

Cirsium japonicum Extracts Show Antioxidant Activity and PC12 Cell Protection against Oxidative Stress (좁은잎 엉겅퀴 추출물의 산화방지 활성 및 산화적 스트레스에 대한 PC12 세포 보호효과)

  • Jang, Miran;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2016
  • The phenolic compounds, antioxidant activity and neuronal cell protective effect of Cirsium japonicum extract were evaluated in this study. High performance liquid chromatography mass analysis showed that C. japonicum was composed of chlorogenic acid, linarin, and pectolinarin. C. japonicum extract showed its antioxidant activity with half-maximal inhibitory concentrations of 567 and $130{\mu}g/mL$ by DPPH and ABTS radical scavenging activity, respectively. The total antioxidant capacities of C. japonicum via DPPH, ABTS, and FRAP assays were 11.32, 100.15, and $12.76{\mu}g/mL$ trolox equivalents, respectively. In addition, the neuroprotective effect of C. japonicum extract was investigated by measuring cell viability via MTT, LDH and DCF-DA assay using $H_2O_2-damaged$ PC12 cells. C. japonicum extract showed neuronal cell protective effects in a dose-dependent manner. These results indicated that C. japonicum extract has potent antioxidant and neuronal protective effects. Therefore, C. japonicum can be regarded as an effective and safe functional food resource as natural antioxidants, and may decrease the risk of neurodegenerative disorders.

Comparison of Biological Activities of Opuntia humifusa and Opuntia ficus-indica (손바닥선인장의 생리활성 비교 연구)

  • Park, Chul Min;Kwak, Byoung Hee;Park, Si Hyung;Kim, Hui;Rhyu, Dong Young
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.519-525
    • /
    • 2013
  • The Opuntia extract has been traditionally used to treat diabetes, inflammation, and rheumatoid arthritis in oriental medicine. The purpose of this study is to investigate characteristics of biological activity between Opuntia humifusa and Opuntia ficus-indica which is cultivating in korea using cell-free system or cell-based assay. O. humifusa extract effectively inhibited ${\alpha}$-glucosidase activity or improved the immune function, and its biological activity was more effective than O. ficus-indica extract. The scavenging activity of DPPH radical and the inhibitory effect of tyrosinase similarly showed by O. humifusa and O. ficus-indica extract, however neuroprotective effect only showed a tendency to increase compared with control in PC12 cells. Therefore the results suggest that O. humifusa can be a useful agent for treatment of diabetes and immunodeficiency.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

Nutritional composition, antioxidant capacity, and brain neuronal cell protective effect of cultivars of dried persimmon (Diospyros kaki) (품종별 곶감(Diospyros kaki)의 영양성분 분석, 산화방지 효과 및 뇌 신경세포 보호효과)

  • Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Park, Sang Hyun;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Lee, Su-Gwang;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • This study was conducted to compare nutritional analysis and neuroprotective effect of 5 cultivars of Diospyros kaki (Dungsi, Godongsi, Gojongsi, Gabjubaekmok, and Bansi). In nutritional analysis, three free sugars: sucrose, glucose, and fructose, and six fatty acids: tartaric acid, hexadecanoic acid, palmitic acid, oleic acid, octadecenamide, and octadecane, were detected. Potassium and phosphorus levels were the highest in inorganic component analysis, and glutamic acid and aspartic acid were the highest contents in amino acid analysis. Vitamin C was detected in all cultivars. Total phenolic content was the highest in Dungsi. Antioxidant activities such as ABTS (3-ethylbenzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, FRAP (ferric reducing/antioxidant power), and MDA (malondialdehyde) inhibitory effect were the highest in Gabjubaekmok. Acetylcholinesterase inhibitory activity, cell viability, intracellular reactive oxygen species (ROS) accumulation, and lactate dehydrogenase (LDH) release were measured to confirm the neuroprotective effect in MC-IXC cells. Gabjubaekmok showed significant acetylcholinesterase (AChE) inhibition and neuroprotection.

Effect of Selenium Yeast on MPTP (1-methyl-4-phenyl-propion-oxypiperidine)-Induced Neurotoxicity in Mice (Selenium이 MPTP(1-methy-4-phenyl-1,2,3,6-tetrahydropyridine)에 의해 유도된 생쥐의 신경독성에 미치는 영향)

  • Kim Seck-Hwan;Lee Joo-Yeon;Kim Yeo-Jeong;Kang Hye-Ok;Lee Hang-Woo;Choi Jong-Won
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.266-273
    • /
    • 2006
  • This study is investigated the effect of selenium against neurotoxicity induced by MPTP(1-methy-4-phenyl-propion-oxypiperidine) in mice. In order to demonstrate neuroprotective activity of selenium, mice were administrated orally with selenium(25, 50, 100 ${\mu}g/kg$, once/day) for 10 days, and MPTP(10 mg/kg) was injected subcutaneously into the mice for 6 days from the beginning 1hr before selenium treatment. Test of rota road activity was inhibited by treatment with selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. Monoamine oxidase(MAO)-B activity and cerebral lipid peroxide content were significantly decreased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice and MAO-A was not affected. Activities of cerebral superoxide dismutase, catalase and glutathione peroxidase were significantly increased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. These results suggest that selenium might be estimated the result from the cooperative action of its inhibitory effect on monoamine oxidase-B with that of the enhancement of antioxidant(SOD, catalase, GSH-Px) defence ability.

Effects of Daejo-whan on the Ischemic Damage of Cerebral Neurons in Culture (대조환이 대뇌신경세포의 허혈성 손상에 미치는 영향)

  • Park Se Hong;Lee Kwang Ro;Bai sun jun;Cheong Sang Su;Kang Sei Young;Lee Sang Kwan;Lee Sung Keun;Yoon Ji won;Sung Kang Keyng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1500-1508
    • /
    • 2003
  • This study was performed to clarify the neurotoxic mechanism of nerve cells damage by brain ischemia. The cytotoxic effect of ischemia was determined by XTT assay, NR assay, superoxide dismutase(SOD) activity, amount of malondialdehyde(MDA), lactate dehydrogenase(LDH) activity, protein synthesis and tumor necrosis factor(TNF)-α activities after cerebral neurons derived from mouse were exposed to ischemia for 1∼30 minutes. In addition, the protective effect of extract of Daejo-whan(DJW) on ischemia-induced neurotoxicity was examined in these cultures. 1. Ischemia decreased cell number and viability by XTT assay or NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 1∼20 minutes in these cultures. 2. Ischemia decreased SOD and protein syntheses, but it increased amount of MDA and, LDH and TNF-α activities in these cultures. 3. In the neuroprotective effect of DJW extracts on cerebral neurons damaged by ischemia, DJW extracts increased SOD activity and protein synthesis. While, it decreased amount of MDA and, LDH and TNF-α activities after cerebral neurons preincubated with herb extracts. It suggests that brain ischemia has neurotoxicity on cultured mouse cerebral neurons, and the herb extract such as DJW was very effective in blocking the neurotoxicity induced by ischemia in cultured mouse cerebral neurons.

Functionality Analysis of Rhus javanica Fermented by Lactobacillus spp. (Lactobacillus spp. 이용 발효 붉나무의 기능성물질 검색에 대한 연구)

  • Lee, Dong-Sung;Kang, Min-Su;Kim, Youn-Chul;Im, Nam-Kyung;Kim, Hyun-Su;Jeong, Gil-Saeng
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2013
  • To determine the potential function of Rhus javanica in Korean medicine, it was fermented with each strain of Lactobacillus spp. Each strain of Lactobacillus spp. was inoculated in lactobacilli MRS broth, and 5 mg/ml of methanol extract of Rhus javanica was added. In mouse hippocampal HT22 cells, ethyl acetate extract of R. javanica fermented with L. brevis KCTC 3498 induced heme oxygenase-1 expression and showed a significant cytoprotective effect on glutamate-induced oxidative damage. The cytoprotective effect was related to the transcription of the nuclear factor E2-related factor2 (Nrf2), which is responsible for the induction of heme oxygenase-1 within the nucleus. The antimicrobial, antioxidant, and heme oxygenase-1 expression activities of fermented R. javanica were measured after extraction with ethyl acetate. R. javanica fermented with L. plantarum subsp. plantarum KCTC 3108, L. fermentum KCTC 3112, and L. brevis KCTC 3498 had higher antioxidant activity than nonfermented R. javanica. The fermented R. javanica with L. plantarum subsp. plantarum KCTC 3108, L. casei KCTC 3109 after ethyl acetate extraction showed antibacterial activity against Bacillus subtilis PCI 219, Escherichia coli KCTC 1682, Shigella flexneri KCTC 2517, Vibrio parahaemolyticus KCTC 7471, and Pseudomonas aeruginosa KCTC 2004. An ethyl acetate extract of the fermented R. javanica with Lactobacillus brevis KCTC 3498 exhibited stronger antibacterial activity than a nonfermented one against strains of B. subtilis PCI 219, E. coli KCTC 1682, S. flexneri KCTC 2517, and V. parahaemolyticus KCTC 7471.

Cytotoxicity of Hydrogen Peroxide and Effects of Rhizoma Gastrodiae Against Hydrogen Peroxide in Mouse Cerebral Neurons (생쥐의 배양 대뇌신경세포에 대한 Hydrogen Peroxide의 세포독성 및 천마의 영향)

  • Choi Yu Sun;Lee Eun Mi;Son Young Woo;Lee Kang Chang;Shin Yong Il;Song Myung Su;Choi Young Ja;Choi Kyu Chul;Kang Hyung Won;Lim Chang Yong;Rhu Ti Yong;Park Sea Hong;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.928-931
    • /
    • 2002
  • To elucidate the toxic effect of oxygen free radicals on cultured mouse cerebral neurons damaged by hydrogen peroxide(H₂O₂)-induced neurotoxicity, we examined the neurotoxicity induced by oxygen radicals by NR assay when cultured cerebral neurons were grown in the media containing various concentrations of H202 for 6 hours. In addition, neuroprotective effects of herb extracts such Rhizoma Gastrodiae(RG) on H202-induced neurotoxicity in cultured cerebral neurons were evaluated after cultured cerebral neurons were preincubated with various concentrations of herb extract, RG for 2 hours before 50uM H₂O₂ for 6 hours. H₂O₂ decreased remarkably cell viability in dose-and time-dependent manner in these cultures, and also herb exract, RG decreased LDH activity of cerebral neurons damaged by H₂O₂. From the above results, it is suggested that H₂O₂ was toxic in cultured cerebral neurons from mouse, and RG was effective in blocking the neurotoxicity induced by oxygen radicals in these cultures.