• 제목/요약/키워드: Neuronal activation

검색결과 289건 처리시간 0.03초

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

  • Lim, Soo Young;Subedi, Lalita;Shin, Dongyun;Kim, Chung Sub;Lee, Kang Ro;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • 제25권5호
    • /
    • pp.519-527
    • /
    • 2017
  • Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), $Interleukin-1{\beta}$ ($IL-1{\beta}$), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.

Age-related epigenetic regulation in the brain and its role in neuronal diseases

  • Kim-Ha, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.671-680
    • /
    • 2016
  • Accumulating evidence indicates many brain functions are mediated by epigenetic regulation of neural genes, and their dysregulations result in neuronal disorders. Experiences such as learning and recall, as well as physical exercise, induce neuronal activation through epigenetic modifications and by changing the noncoding RNA profiles. Animal models, brain samples from patients, and the development of diverse analytical methods have broadened our understanding of epigenetic regulation in the brain. Diverse and specific epigenetic changes are suggested to correlate with neuronal development, learning and memory, aging and age-related neuronal diseases. Although the results show some discrepancies, a careful comparison of the data (including methods, regions and conditions examined) would clarify the problems confronted in understanding epigenetic regulation in the brain.

Methamphetamine-Induced Neuronal Damage: Neurotoxicity and Neuroinflammation

  • Kim, Buyun;Yun, Jangmi;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.381-388
    • /
    • 2020
  • Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.

Sesamin attenuates neuronal damage through inhibition of microglial activation following global cerebral ischemia in rats

  • Kong, Minjung;Hong, Sung In
    • 대한본초학회지
    • /
    • 제28권2호
    • /
    • pp.1-7
    • /
    • 2013
  • Objectives : Sesamin, a major lignan in sesame seeds, has been reported to have neuroprotective effects against in vitro ischemia and in vivo MCAo-reperfusion cerebral ischemia model, however, there is no reports in an in vivo global cerebral ischemia model. The purpose of the study was to investigate the neuroprotective effect of sesamin in global cerebral ischemia induced by four-vessel occlusion (4-VO) in rats through inhibition of microglial activation in this model. Methods : The neuroprotective effects were investigated using a 10 min of 4-VO ischemia rat model by measuring intact pyramidal neurons in the CA1 region of the hippocampus using Nissle staining. The antiinflammatory or reducing neurotoxicity effect was investigated using immunohistochemisty, RT-PCR and western blot analysis of inflammatory or neurotoxic mediators. Results : Intraperitoneal injection of sesamin at doses of 0.3, 1.0, 3.0, and 10.0 mg/kg at 0 min and 90 min after ischemia conferred 26.6%, 30.1%, 42.5%, and 30.5% neuroprotection, respectively, compared to the vehicle-treated control group. A 3.0 mg/kg dose of sesamin inhibited microglia activation and consequently, cyclooxygenase-2, inducible nitric oxide, and interleukine-$1{\beta}$ expressions at 48 h after reperfusion. Conclusions : Sesamin protects neuronal cell death through inhibition of microglial activation or the production of neurotoxic metabolites and proinflammatory mediators by microglia such as COX-2, iNOS and IL-$1{\beta}$ in global cerebral ischemia.

Study of Effects of Electroacupuncture on the Hippocampal Cholinergic Neuronal Activity

  • Lee Kwang Ro;Kang Sei Young;Yoon Ji Won;Cho Chang Hyun;Sung Kang Keyng
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1850-1855
    • /
    • 2004
  • The purpose of this report is to investigate the electroacupuncture effect on the cholinergic neuronal activation in the hippocampal CA1 section. The electroacupuncture was performed on S36 of white rats and its consequencies were investigated by immunohistochemical method. Hippocampal CA1 sections of Sprague Dawley white male rats electroacupunctured on S36 at 20㎐ and 100㎐ are stained by cresyl violet to show that the values of 100㎐ and 20㎐ group increased significantly compared to sham group's one. Especially, 100㎐ group shows stronger neuronal activation compared to 20㎐ group. Induction of AChE, a neurotransmitter, in hippocampal CA1 is increased significantly in 100㎐ and 20㎐ group compared to sham group. Especially 20㎐ group shows higher AChE immunoreaction than 100㎐ does, although it wasn't significant enough. Induction of NGF(Nerve Growth Factor) in hippocampal CA1 sections was observed higher in 20㎐ and 100㎐ group than in sham group. Especially, 20㎐ group shows higher NGF immunoreaction compared to 100㎐. The facts above indicate that the eletroacupucture is effect to the cholinergic neuronal activation of hippocampus induced by focal ischemia.

Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells

  • Yeon, Jeong-Ah;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.24-31
    • /
    • 2010
  • Taurine, 2-aminoethanesulfonic acid, is an abundant free amino acid present in brain cells and exerts many important biological functions such as anti-convulsant, modulation of neuronal excitability, regulation of learning and memory, anti-aggressiveness and anti-alcoholic effects. In the present study, we investigated to explore whether taurine has any protective actions against oxidative stress-induced damages in neuronal cells. ERK I/II regulates signaling pathways involved in nitric oxide (NO) and reactive oxygen species (ROS) production and plays a role in the regulation of cell growth, and apoptosis. We have found that taurine significantly inhibited AMPA induced cortical depolarization in the Grease Gap assays using rat cortical slices. Taurine also inhibited AMPA-induced neuronal cell damage in MTT assays in the differentiated SH-SY5Y cells. When the neuronal cells were treated with $H_2O_2$, levels of NO were increased; however, taurine pretreatment decreased the NO production induced by $H_2O_2$ to approximately normal levels. Interestingly, taurine treatment stimulated ERK I/II activity in the presence of AMPA or $H_2O_2$, suggesting the potential role of ERK I/II in the neuroprotection of taurine. Taken together, taurine has significant neuroprotective actions against AMPA or $H_2O_2$ induced damages in neuronal cells, possibly via activation of ERK I/II.

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

보양환오탕이 영양혈청결핍에 의한 PC12 세포의 고사에 미치는 영향 (Protective Effects of Boyanghwanoh-tang on Serum and Glucose Deprivation-induced Apoptosis of PC12 Cells)

  • 김종길;정승원;임준모;장호현;윤종민;이기상;문병순
    • 대한한의학회지
    • /
    • 제24권2호
    • /
    • pp.179-192
    • /
    • 2003
  • Objectives : Boyanghwanoh-tang (Buyanhaiwu-tang) has been used as a prescription for stroke, senile and vascular dementia, ischemic brain and heart damage in Oriental traditional medicine. However, there is little known about the mechanism by which the water extracts of Boyanghwanoh-tang (Buyanhaiwu-tang) rescue cells fromthese damages, and little is known about the protective mechanisms of Boyanghwanoh-tang (Buyanhaiwu-tang) on oxidative stress in neuronal cells. Therefore, we have investigated the role of Boyanghwanoh-tang (Buyanhaiwu-tang) on serum and glucose deprived apoptosis in PC12 cells. Methods : PC12 Cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MIT assay. We used DNA fragmentation and caspase 1, 2, 3, 6, 9-likeproteases activation assay. Transcriptional activation of NF-kB was assessed by using electrophoretic mobility shift assay. Results : Boyanghwanoh-tang (Buyanhaiwu-tang) rescued PC12 cells from apoptotic death by serum and glucose deprivation in a dose-dependent manner. The nuclear staining of PC12 cells clearly showed that Boyanghwanoh-tang (Buyanhaiwu-tang) attenuated nuclear condensation and fragmentation, which represent typical neuronal apoptotic characteristics. Boyanghwanoh-tang (Buyanhaiwu-tang) also prevents fragmentation of genomic DNA and activation of caspase 3-like protease in serum and glucose deprived PC12 cells. Furthermore, Boyanghwanoh-tang (Buyanhaiwu-tang) reduced the activation of NF-kB by serum and glucose-deprived apoptosis. Conclusions : These findings suggest that serum and glucose deprivation induces reduced glutathione (GSH) depletion, and consequently, apoptosis through endogenously produced reactive oxygen species in PC12 cells. Also, our data indicated that Boyanghwanoh-tang (Buyanhaiwu-tang) has protective effects against the serum and glucose deprived deaths of PC12 cells, which are mediated by the generation of GSH that, in turn, can reduce oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide.

  • PDF

Pharmacological Properties of CDBT in Hypoxia-induced Neuronal Cell Injury and Their Underlying Mechanisms

  • Park, Sang-kyu;Jung, Eun-sun;Cha, Ji-yoon;Cho, Hyun-kyoung;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • 대한한방내과학회지
    • /
    • 제40권3호
    • /
    • pp.425-442
    • /
    • 2019
  • Objectives: This study aimed to reveal the pharmacological properties of the newly prescribed herbal mixture, Chenmadansamgamibokhap-tang(CDBT), against hypoxia-induced neuronal cell injury (especially mouse hippocampal neuronal cell line, HT-22 cells) and their corresponding mechanisms. Methods: A cell-based in vitro experiment, in which a hypoxia condition induced neuronal cell death, was performed. Various concentrations of the CDBT were pre-treated to the HT-22 cells for 4 h before 18 h in the hypoxia chamber. The glial cell BV-2 cells were stimulated with $IFN{\gamma}$ and LSP to produce inflammatory cytokines and reactive oxygen species. When the neuronal HT-22 cells were treated with this culture solution, the drug efficacy against neuronal cell death was examined. Results: CDBT showed cytotoxicity in the normal condition of HT-22 cells at a dose of $125{\mu}g/mL$ and showed a protective effect against hypoxia-induced neuronal cell death at a dose of $31.3{\mu}g/mL$. CDBT prevented hypoxia-induced neuronal cell death in a dose-dependent manner in the HT-22 cells by regulating $HIF1{\alpha}$ and cell death signaling. CDBT prevented neuronal cell death signals and DNA fragmentation due to the hypoxia condition. CDBT significantly reduced cellular oxidation, cell death signals, and caspase-3 activities due to microglial cell activations. Moreover, CDBT significantly ameliorated LPS-induced BV-2 cell activation and evoked cellular oxidation through the recovery of redox homeostasis. Conclusions: CDBT cam be considered as a vital therapeutic agent against neuronal cell deaths. Further studies are required to reveal the other functions of CDBT in vivo or in the clinical field.