Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.1.024

Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells  

Yeon, Jeong-Ah (Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University)
Kim, Sung-Jin (Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.18, no.1, 2010 , pp. 24-31 More about this Journal
Abstract
Taurine, 2-aminoethanesulfonic acid, is an abundant free amino acid present in brain cells and exerts many important biological functions such as anti-convulsant, modulation of neuronal excitability, regulation of learning and memory, anti-aggressiveness and anti-alcoholic effects. In the present study, we investigated to explore whether taurine has any protective actions against oxidative stress-induced damages in neuronal cells. ERK I/II regulates signaling pathways involved in nitric oxide (NO) and reactive oxygen species (ROS) production and plays a role in the regulation of cell growth, and apoptosis. We have found that taurine significantly inhibited AMPA induced cortical depolarization in the Grease Gap assays using rat cortical slices. Taurine also inhibited AMPA-induced neuronal cell damage in MTT assays in the differentiated SH-SY5Y cells. When the neuronal cells were treated with $H_2O_2$, levels of NO were increased; however, taurine pretreatment decreased the NO production induced by $H_2O_2$ to approximately normal levels. Interestingly, taurine treatment stimulated ERK I/II activity in the presence of AMPA or $H_2O_2$, suggesting the potential role of ERK I/II in the neuroprotection of taurine. Taken together, taurine has significant neuroprotective actions against AMPA or $H_2O_2$ induced damages in neuronal cells, possibly via activation of ERK I/II.
Keywords
Oxidative stress; AMPA; ERK I/II; Taurine; Neuronal cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Aikawa, R., Nawano, M., Gu, Y., Katagiri, H., Asano, T., Zhu, W., Nagai, R. and Komuro, I. (2000). Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102, 2873-2879.   DOI   ScienceOn
2 Black, M. D., Wotanis, J., Schillip, D. E., Hanak, S. E., Sorensen, S. M., Wettstein, J. G. (2000). Effect of AMPA receptor modulators on hippocampal and cortical function. Eur. J. Pharmacol. 394, 85-90.   DOI
3 Canas, N., Valero, T., Villarroya, M., Montell, E., Verges, J., Garcia, A. G. and Lopez, M. G. (2007). Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing Heme Oxygenase-1 via Phosphatidylinositol 3-kinase/Akt. J. Pharmacol. Exp. Therap. 323, 946-953.   DOI
4 Gartwaite, G. and Gartwaite, J. (1991). AMPA neurotoxicity in rat cerebellar and hippocampal slices: histological evidence for three mechanisms. Eur. J. Neurosci. 3, 715-728.   DOI
5 Gartwaite, G. and Gartwaite, J. (1991). Mechanisms of AMPA neurotoxicity in cerebellar and hippocampal slices. Eur. J. Neurosci. 3, 729-736.   DOI
6 Griffins, T., Evans, M. C. and Meldrum, B. S. (1984). Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neurosci. 12, 557-567.   DOI
7 Harrison, N. L. and Simmonds, M. A. (1985). Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br. J. Pharmacol. 84, 381-391.   DOI   ScienceOn
8 Jiang, X., Ai, C., Shi, E., Nakajima, Y. and Ma, H. (2009). Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postcondiditoning methods: roles of phosphatidylinositol 3-Kinase-Akt and extracellular signal-regulated kinase. Anestheiol. 111, 1197-1205.   DOI
9 Kalimo, H., Agardh, C. D., Olsson, Y. and Siejo, B. K. (1980). Hypoglycemic brain injury: II. Electron microscopic findings in rat cerebral cortical neurons during profound insulininduced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol. (Berl) 50, 43-52.   DOI
10 Lin, Y. C., Huang, Y. C., Chen, S. C., Liaw, C. C., Kuo, S. C., Huang, L. J. and Gean, P. W. (2009). Neuroprotective effects of Ugonin K on hydrogen peroxide-induced cell death in human neuroblastoma SH-SY5Y cells. Neurochem. Res. 34, 923-930.   DOI
11 Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, S. H. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632.   DOI
12 Morales, M., Gonzalez-Mejia, M. E., Bernabe, A., Hernandez-Kelly, L. C. R. and Ortega, A. (2006). Glutamate activates Protein kinase B (PKB/Akt) through AMPA receptors in cultured Bergmann glia cells. Neurochem. Res. 31, 423-429.   DOI
13 Park, S., Kim, H. and Kim, S. J. (2001). Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem. Phamacol. 62, 1107-1111.   DOI
14 Park, S. H., Lee, H., Park, K. K., Kim, H. W. and Park, T. (2006). Taurine-responsive gones related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J. Medical Food 9, 33-41.   DOI
15 Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol. & Medicine 29, 323-333.   DOI
16 Cheung, Y. T., Lau, W. K. W., Yu, M. S., Lai, C. S. W., Yeung, S. C., So K. F. and Chang, R. C. C. (2009). Effect of all-transretinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicol. 30, 127-135.   DOI
17 Saransaari, P. and Oja, S. S. (2007). Taurine release in mouse brain stem slices under cell-damaging conditions. Amino Acids 32, 439-446   DOI
18 Frosini, M. (2007). Changes in CSF composition during heat stress and fever in conscious rabbits. Prog. Brain Res. 162, 449-457.   DOI
19 Saransarari, P. and Oja, S. S. (2000a). Involvement of metabotrophic glutamate receptors in ischemia-induced taurine release in the developing and adult hippocampus. Neurochem. Res. 25, 1067-1072.   DOI
20 Saransaari, P. and Oja, S. S. (2000b). Taurine and neural cell damage. Amino Acids 19, 509-526.   DOI
21 Saransarari, P. and Oja, S. S. (2007). Taurine release in the developing and adult hippocampus. Neurochem. Res. 25, 1067-1072.   DOI
22 Sato, M., Hashimoto, H. and Kosaka, F. (1990). Histological changes of neuronal damage in vegetative dogs induced by 18 minutes Purkinje cells and hippocampal CA1 pyramidal cells. Acta Neuropathol. 80, 527-534.   DOI
23 Shen, J., Wu, Y., Xu, J. Y., Zhang, J., Sinclair, S. H., Yanoff, M., Xu, G., Li, W. and Xu, G. T. (2009). ERK- and Akt-dependent neuroprotectin by erythropoietin (Epo) against glyoxal-AGEs via modulation of Bcl-xL, Bax and BAD. Invest. Ophthalmol. Vis. Sci. in press.
24 Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H. and Meldrum, B. S. (1984). Calcium overload in selectivity vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy stud in the rat. J. Cereb. Blood Flow Metab. 4, 350-361.   DOI
25 Kim, S. J. and Han, Y. (2005). Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt). J. Neural. Transm. 112, 179-191.   DOI
26 Strahlendorf, J., McMahon, K., Border, B., Barenberg, P., Miles, R. and Strahlendorf, H. (1999). AMPA-induced dark cell degeneration of cerebellar Purkinje neurons has characteristics of apoptosis. Neuroscie. Res. Commun. 25, 149-161.   DOI
27 Liao, X. B., Zhou, X. M., Li, J. M., Yang, J. F., Tan, Z. P., Hu, Z. W., Liu, W., Lu, Y. and Yuan, L. Q. (2008). Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway. Amino Acids 34, 525-530.   DOI
28 Son, H. Y., Kim, H. and Kwon, Y. H. (2007). Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J. Nutr. Sci. Vitaminol. 53, 324-330.   DOI
29 Spencer, J. P., Rice-Evans, C. and Williams, R. J. (2003). Modulation of pro-survival Akt/Protein kinase B and ERK1/2 signaling cascades by Quercetin and its in vivo metabolites underlie there action on neuronal viability. J. Biol. Chem. 278, 34783-34793.   DOI
30 Strahlendorf, J. C. and Strahlendorf, H. K. (1999). Enduring changes in Purkinje cell electrophysiology following transient exposure to AMPA: correlates to dark cell degeneration. Neurosci. Res. 33, 155-162.   DOI
31 Wu, J. Y., Lin, C. T., Johansen, F. F. and Liu, J. W. (1994). Taurine neurons in rat hippocampal formation are relatively inert to cerebral ischemia. Adv. Exp. Med. Biol. 359, 289-298.   DOI
32 Vauzour, D., Vafeiadou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. E. (2007). Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103, 1355-1367.   DOI
33 Zhang, L., Yu, H., Sun, Y., Lin, X., Chen, B., Tan, C., Cao, G. and Wang, Z. (2007). Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564, 18-25.   DOI
34 Ruffels, J., Griffin, M. and Dickenson, J. M. (2004). Activation of ERK1.2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in $H_2O_2$-induced cell death. Eur. J. Pharmacol. 483, 163-173.   DOI
35 Saransaari, P. and Oja, S. S. (1999). Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 94, 949-954.   DOI
36 Wu, X., Zhu, D., Jiang, X., Okagaki, P., Mearow, K., Zhu, G., McCall, S., Banaudha, K., Lipsky, R. H. and Marini, A. M. (2004). AMPA protects sulruted neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J. Nerochem. 90, 807-818.   DOI
37 Zhuang, S., Yan Y., Daubert, R. A., Han, J. and Schnellmann R. G. (2007). ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Renal Physiol. 292, 440-447.
38 Chen, L., Liu, L., Yin, J., Luo, Y. and Huang, S. (2009). Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem & Cell Biol. 41, 1284-1295.   DOI
39 Soderfeldt, B., Kalimo, H., Olsson, Y. and Siesjo, B. (1981). Pathogenesis of brain lesions caused by experimental epilepsy. Acta Neuropath. (Berl) 54, 219-231.   DOI
40 Vartanian, M. G., Cordon, J. J., Kupino, N. C., Schielke, G., Posner, A., Raswer, K. J., Wange, K. K. W. and Taylor, C. P. (1996). Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats. Dev. Brain Res. 95, 169-175.   DOI
41 Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T. (2007). Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30, 2345-2351.   DOI
42 Louzada, P. R., Paula, L. A. C., Mendonca-silva, D. L., Noel, F., De Mello, F. G. and Ferreira, S. T. (2004). Taurine prevents the neurotoxicity of $\beta$-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disorders. FASEB. J. 18, 511-518.   DOI