Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.044

Methamphetamine-Induced Neuronal Damage: Neurotoxicity and Neuroinflammation  

Kim, Buyun (College of Pharmacy, Keimyung University)
Yun, Jangmi (College of Pharmacy, Keimyung University)
Park, Byoungduck (College of Pharmacy, Keimyung University)
Publication Information
Biomolecules & Therapeutics / v.28, no.5, 2020 , pp. 381-388 More about this Journal
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.
Keywords
Methamphetamine; Neurotoxicity; Neuroinflammation; Excitotoxicity; Apoptosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fischer, R. and Maier, O. (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev. 2015, 610813.
2 Fleckenstein, A. E., Volz, T. J. and Hanson, G. R. (2009) Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology 56 Suppl 1, 133-138.   DOI
3 Fleckenstein, A. E., Volz, T. J., Riddle, E. L., Gibb, J. W. and Hanson, G. R. (2007) New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47, 681-698.   DOI
4 Rusyniak, D. E. (2011) Neurologic manifestations of chronic methamphetamine abuse. Neurol. Clin. 29, 641-655.   DOI
5 Granado, N., Ares-Santos, S. and Moratalla, R. (2013) Methamphetamine and Parkinson's disease. Parkinsons Dis. 2013, 308052.
6 Galluzzi, L., Blomgren, K. and Kroemer, G. (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10, 481-494.   DOI
7 German, C. L., Hanson, G. R. and Fleckenstein, A. E. (2012) Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter relocalization. J. Neurochem. 123, 288-297.   DOI
8 Gorlach, A., Klappa, P. and Kietzmann, T. (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391-1418.   DOI
9 Hayashi, T., Justinova, Z., Hayashi, E., Cormaci, G., Mori, T., Tsai, S. Y., Barnes, C., Goldberg, S. R. and Su, T. P. (2010) Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J. Pharmacol. Exp. Ther. 332, 1054-1063.   DOI
10 Hedges, D. M., Obray, J. D., Yorgason, J. T., Jang, E. Y., Weerasekara, V. K., Uys, J. D., Bellinger, F. P. and Steffensen, S. C. (2018) Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology 43, 1405-1414.   DOI
11 Saha, K., Sambo, D., Richardson, B. D., Lin, L. M., Butler, B., Villarroel, L. and Khoshbouei, H. (2014) Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing. J. Biol. Chem. 289, 22246-22257.   DOI
12 Sambo, D. O., Lin, M., Owens, A., Lebowitz, J. J., Richardson, B., Jagnarine, D. A., Shetty, M., Rodriquez, M., Alonge, T., Ali, M., Katz, J., Yan, L., Febo, M., Henry, L. K., Bruijnzeel, A. W., Daws, L. and Khoshbouei, H. (2017) The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun. 8, 2228.   DOI
13 Sanchez, V., Zeini, M., Camarero, J., O'Shea, E., Bosca, L., Green, A. R. and Colado, M. I. (2003) The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immunoreactivity induced by methamphetamine in the mouse striatum. J. Neurochem. 85, 515-524.   DOI
14 Schmitt, K. C. and Reith, M. E. (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann. N. Y. Acad. Sci. 1187, 316-340.   DOI
15 Zanassi, P., Paolillo, M., Feliciello, A., Avvedimento, E. V., Gallo, V. and Schinelli, S. (2001) cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J. Biol. Chem. 276, 11487-11495.   DOI
16 Zhu, J. P., Xu, W. and Angulo, J. A. (2006) Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 140, 607-622.   DOI
17 Besnard, A., Bouveyron, N., Kappes, V., Pascoli, V., Pages, C., Heck, N., Vanhoutte, P. and Caboche, J. (2011) Alterations of molecular and behavioral responses to cocaine by selective inhibition of Elk-1 phosphorylation. J. Neurosci. 31, 14296-14307.   DOI
18 Xu, E., Liu, J., Liu, H., Wang, X. and Xiong, H. (2017) Role of microglia in methamphetamine-induced neurotoxicity. Int. J. Physiol. Pathophysiol. Pharmacol. 9, 84-100.
19 Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L., Xiong, K., Yi, C. X. and Yan, J. (2018) The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment. Front. Mol. Neurosci. 11, 186.   DOI
20 Battaglia, G., Fornai, F., Busceti, C. L., Aloisi, G., Cerrito, F., De Blasi, A., Melchiorri, D. and Nicoletti, F. (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J. Neurosci. 22, 2135-2141.   DOI
21 Beaumont, T. L., Yao, B., Shah, A., Kapatos, G. and Loeb, J. A. (2012) Layer-specific CREB target gene induction in human neocortical epilepsy. J. Neurosci. 32, 14389-14401.   DOI
22 Beauvais, G., Atwell, K., Jayanthi, S., Ladenheim, B. and Cadet, J. L. (2011) Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS ONE 6, e28946.   DOI
23 Billod, J. M., Lacetera, A., Guzman-Caldentey, J. and Martin-Santamaria, S. (2016) Computational approaches to toll-like receptor 4 modulation. Molecules 21, 994.   DOI
24 Brempelis, K. J., Yuen, S. Y., Schwarz, N., Mohar, I. and Crispe, I. N. (2017) Central role of the TIR-domain-containing adaptor-inducing interferon-beta (TRIF) adaptor protein in murine sterile liver injury. Hepatology 65, 1336-1351.   DOI
25 Cadet, J. L., Jayanthi, S. and Deng, X. (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox. Res. 8, 199-206.   DOI
26 Cadet, J. L. and Krasnova, I. N. (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int. Rev. Neurobiol. 88, 101-119.
27 Hogan, K. A., Staal, R. G. and Sonsalla, P. K. (2000) Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J. Neurochem. 74, 2217-2220.   DOI
28 Sekine, Y., Ouchi, Y., Sugihara, G., Takei, N., Yoshikawa, E., Nakamura, K., Iwata, Y., Tsuchiya, K. J., Suda, S., Suzuki, K., Kawai, M., Takebayashi, K., Yamamoto, S., Matsuzaki, H., Ueki, T., Mori, N., Gold, M. S. and Cadet, J. L. (2008) Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci. 28, 5756-5761.   DOI
29 Shah, A. and Kumar, A. (2016) Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1alpha and PERK pathways. Oncotarget 7, 46100-46119.   DOI
30 Shen, X., Zhang, K. and Kaufman, R. J. (2004) The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat. 28, 79-92.   DOI
31 Castino, R., Bellio, N., Nicotra, G., Follo, C., Trincheri, N. F. and Isidoro, C. (2007) Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic. Biol. Med. 42, 1305-1316.   DOI
32 Chamorro, A., Dirnagl, U., Urra, X. and Planas, A. M. (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15, 869-881.   DOI
33 Jayanthi, S., Deng, X., Noailles, P. A., Ladenheim, B. and Cadet, J. L. (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 18, 238-251.   DOI
34 Itzhak, Y., Gandia, C., Huang, P. L. and Ali, S. F. (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J. Pharmacol. Exp. Ther. 284, 1040-1047.
35 Itzhak, Y., Martin, J. L. and Ail, S. F. (2000) nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice. Neuroreport 11, 2943-2946.   DOI
36 Jayanthi, S., Deng, X., Bordelon, M., McCoy, M. T. and Cadet, J. L. (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15, 1745-1752.   DOI
37 Johannessen, M. and Moens, U. (2007) Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 12, 1814-1832.   DOI
38 Kahlig, K. M. and Galli, A. (2003) Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur. J. Pharmacol. 479, 153-158.   DOI
39 Kohno, M., Link, J., Dennis, L. E., McCready, H., Huckans, M., Hoffman, W. F. and Loftis, J. M. (2019) Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol. Biochem. Behav. 179, 34-42.   DOI
40 Shen, Y., Qin, H., Chen, J., Mou, L., He, Y., Yan, Y., Zhou, H., Lv, Y., Chen, Z., Wang, J. and Zhou, Y. D. (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J. Cell Biol. 215, 719-734.   DOI
41 Shiflett, M. W. and Balleine, B. W. (2011) Molecular substrates of action control in cortico-striatal circuits. Prog. Neurobiol. 95, 1-13.   DOI
42 Shin, E. J., Duong, C. X., Nguyen, X. K., Li, Z., Bing, G., Bach, J. H., Park, D. H., Nakayama, K., Ali, S. F., Kanthasamy, A. G., Cadet, J. L., Nabeshima, T. and Kim, H. C. (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cdelta. Behav. Brain Res. 232, 98-113.   DOI
43 Choi, J. H., Choi, A. Y., Yoon, H., Choe, W., Yoon, K. S., Ha, J., Yeo, E. J. and Kang, I. (2010) Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp. Mol. Med. 42, 811-822.   DOI
44 Chao, J., Zhang, Y., Du, L., Zhou, R., Wu, X., Shen, K. and Yao, H. (2017) Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep. 7, 11540.   DOI
45 Chen, J., Rusnak, M., Lombroso, P. J. and Sidhu, A. (2009) Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur. J. Neurosci. 29, 287-306.   DOI
46 Chen, L., Huang, E., Wang, H., Qiu, P. and Liu, C. (2013) RNA interference targeting alpha-synuclein attenuates methamphetamineinduced neurotoxicity in SH-SY5Y cells. Brain Res. 1521, 59-67.   DOI
47 Chu, P. W., Seferian, K. S., Birdsall, E., Truong, J. G., Riordan, J. A., Metcalf, C. S., Hanson, G. R. and Fleckenstein, A. E. (2008) Differential regional effects of methamphetamine on dopamine transport. Eur. J. Pharmacol. 590, 105-110.   DOI
48 Shin, E. J., Tran, H. Q., Nguyen, P. T., Jeong, J. H., Nah, S. Y., Jang, C. G., Nabeshima, T. and Kim, H. C. (2018) Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: involvement in oxidative stress, neuroinflammation, and pro-apoptosis-a review. Neurochem. Res. 43, 66-78.   DOI
49 Snider, S. E., Hendrick, E. S. and Beardsley, P. M. (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur. J. Pharmacol. 701, 124-130.   DOI
50 Son, J. S., Jeong, Y. C. and Kwon, Y. B. (2015) Regulatory effect of bee venom on methamphetamine-induced cellular activities in prefrontal cortex and nucleus accumbens in mice. 38, 48-52.   DOI
51 Sonders, M. S., Zhu, S. J., Zahniser, N. R., Kavanaugh, M. P. and Amara, S. G. (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960-974.   DOI
52 Staszewski, R. D. and Yamamoto, B. K. (2006) Methamphetamine-induced spectrin proteolysis in the rat striatum. J. Neurochem. 96, 1267-1276.   DOI
53 Lee, M. Y., Heo, J. S. and Han, H. J. (2006) Dopamine regulates cell cycle regulatory proteins via cAMP, Ca(2+)/PKC, MAPKs, and NF-kappaB in mouse embryonic stem cells. J. Cell. Physiol. 208, 399-406.   DOI
54 Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A. and Wouters, B. G. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405-7416.   DOI
55 Krasnova, I. N., Justinova, Z. and Cadet, J. L. (2016) Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl.) 233, 1945-1962.   DOI
56 Lazzeri, G., Lenzi, P., Busceti, C. L., Ferrucci, M., Falleni, A., Bruno, V., Paparelli, A. and Fornai, F. (2007) Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons. J. Neurochem. 101, 1414-1427.   DOI
57 Li, Y. H., Wang, H. J. and Qiao, D. F. (2008) Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum. Nan Fang Yi Ke Da Xue Xue Bao 28, 1789-1791.
58 Lin, M., Sambo, D. and Khoshbouei, H. (2016) Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci. 36, 10376-10391.   DOI
59 Liu, X., Silverstein, P. S., Singh, V., Shah, A., Qureshi, N. and Kumar, A. (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS ONE 7, e33822.   DOI
60 Loftis, J. M. and Janowsky, A. (2014) Neuroimmune basis of methamphetamine toxicity. Int. Rev. Neurobiol. 118, 165-197.   DOI
61 Sun, W. L., Quizon, P. M. and Zhu, J. (2016) Molecular mechanism: ERK signaling, drug addiction, and behavioral effects. Prog. Mol. Biol. Transl. Sci. 137, 1-40.
62 Stokes, A. H., Hastings, T. G. and Vrana, K. E. (1999) Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659-665.   DOI
63 Sulzer, D., Maidment, N. T. and Rayport, S. (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60, 527-535.   DOI
64 Sulzer, D., Pothos, E., Sung, H. M., Maidment, N. T., Hoebel, B. G. and Rayport, S. (1992) Weak base model of amphetamine action. Ann. N. Y. Acad. Sci. 654, 525-528.   DOI
65 Suwanjang, W., Phansuwan-Pujito, P., Govitrapong, P. and Chetsawang, B. (2010) The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells. J. Pineal Res. 48, 94-101.   DOI
66 Tabas, I. and Ron, D. (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184-190.   DOI
67 Tocharus, J., Khonthun, C., Chongthammakun, S. and Govitrapong, P. (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J. Pineal Res. 48, 347-352.   DOI
68 Tseng, E. E., Brock, M. V., Lange, M. S., Troncoso, J. C., Blue, M. E., Lowenstein, C. J., Johnston, M. V. and Baumgartner, W. A. (2010) Glutamate excitotoxicity mediates neuronal apoptosis after hypothermic circulatory arrest. Ann. Thorac. Surg. 89, 440-445.   DOI
69 Davis, S., Vanhoutte, P., Pages, C., Caboche, J. and Laroche, S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563-4572.   DOI
70 Dang, D. K., Shin, E. J., Nam, Y., Ryoo, S., Jeong, J. H., Jang, C. G., Nabeshima, T., Hong, J. S. and Kim, H. C. (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J. Neuroinflammation 13, 12.   DOI
71 Mizoguchi, H., Yamada, K., Mizuno, M., Mizuno, T., Nitta, A., Noda, Y. and Nabeshima, T. (2004) Regulations of methamphetamine reward by extracellular signal-regulated kinase 1/2/ets-like gene-1 signaling pathway via the activation of dopamine receptors. Mol. Pharmacol. 65, 1293-1301.   DOI
72 Majdi, F., Taheri, F., Salehi, P., Motaghinejad, M. and Safari, S. (2019) Cannabinoids delta(9)-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-kappaB signaling. Med. Hypotheses 133, 109371.
73 Matsumoto, R. R., Seminerio, M. J., Turner, R. C., Robson, M. J., Nguyen, L., Miller, D. B. and O'Callaghan, J. P. (2014) Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol. Ther. 144, 28-40.   DOI
74 Meredith, C. W., Jaffe, C., Ang-Lee, K. and Saxon, A. J. (2005) Implications of chronic methamphetamine use: a literature review. Harv. Rev. Psychiatry 13, 141-154.   DOI
75 Moratalla, R., Khairnar, A., Simola, N., Granado, N., Garcia-Montes, J. R., Porceddu, P. F., Tizabi, Y., Costa, G. and Morelli, M. (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog. Neurobiol. 155, 149-170.   DOI
76 Nam, Y., Wie, M. B., Shin, E. J., Nguyen, T. T., Nah, S. Y., Ko, S. K., Jeong, J. H., Jang, C. G. and Kim, H. C. (2015) Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C delta in human neuroblastoma dopaminergic SH-SY5Y cell lines. J. Appl. Toxicol. 35, 927-944.   DOI
77 Nguyen, L., Lucke-Wold, B. P., Mookerjee, S. A., Cavendish, J. Z., Robson, M. J., Scandinaro, A. L. and Matsumoto, R. R. (2015) Role of sigma-1 receptors in neurodegenerative diseases. J. Pharmacol. Sci. 127, 17-29.   DOI
78 Deng, X., Jayanthi, S., Ladenheim, B., Krasnova, I. N. and Cadet, J. L. (2002) Mice with partial deficiency of c-Jun show attenuation of methamphetamine-induced neuronal apoptosis. Mol. Pharmacol. 62, 993-1000.   DOI
79 Dawson, T. M. and Dawson, V. L. (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu. Rev. Pharmacol. Toxicol. 57, 437-454.   DOI
80 Dean, A. C., Groman, S. M., Morales, A. M. and London, E. D. (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38, 259-274.   DOI
81 Du, S. H., Qiao, D. F., Chen, C. X., Chen, S., Liu, C., Lin, Z., Wang, H. and Xie, W. B. (2017) Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through Caspase-11 signaling pathway in astrocytes. Front. Mol. Neurosci. 10, 409.   DOI
82 Elkashef, A., Vocci, F., Hanson, G., White, J., Wickes, W. and Tiihonen, J. (2008) Pharmacotherapy of methamphetamine addiction: an update. Subst. Abus. 29, 31-49.   DOI
83 Eyerman, D. J. and Yamamoto, B. K. (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J. Neurochem. 103, 1219-1227.   DOI
84 Wang, G. J., Smith, L., Volkow, N. D., Telang, F., Logan, J., Tomasi, D., Wong, C. T., Hoffman, W., Jayne, M., Alia-Klein, N., Thanos, P. and Fowler, J. S. (2012) Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol. Psychiatry 17, 918-925.   DOI
85 Wang, J., Yang, X. and Zhang, J. (2016) Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic beta cells. Cell Signal. 28, 1099-1104.   DOI
86 Warren, M. W., Kobeissy, F. H., Liu, M. C., Hayes, R. L., Gold, M. S. and Wang, K. K. (2005) Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci. 78, 301-309.   DOI
87 Xiong, K., Long, L., Zhang, X., Qu, H., Deng, H., Ding, Y., Cai, J., Wang, S., Wang, M., Liao, L., Huang, J., Yi, C. X. and Yan, J. (2017) Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol. In Vitro 44, 1-10.   DOI
88 Bachtell, R., Hutchinson, M. R., Wang, X., Rice, K. C., Maier, S. F. and Watkins, L. R. (2015) Targeting the toll of drug abuse: the translational potential of toll-like receptor 4. CNS Neurol. Disord. Drug Targets 14, 692-699.   DOI
89 Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., Stipanovich, A., Caboche, J., Lombroso, P. J., Nairn, A. C., Greengard, P., Herve, D. and Girault, J. A. (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. U.S.A. 102, 491-496.   DOI
90 Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C. and Miller, E. N. (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 158, 377-382.   DOI
91 Wan, F., Zang, S., Yu, G., Xiao, H., Wang, J. and Tang, J. (2017) Ginkgolide B suppresses methamphetamine-induced microglial activation through TLR4-NF-kappaB signaling pathway in BV2 cells. Neurochem. Res. 42, 2881-2891.   DOI
92 Abekawa, T., Ohmori, T. and Koyama, T. (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res. 643, 276-281.   DOI
93 Ares-Santos, S., Granado, N. and Moratalla, R. (2013) The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med. 273, 437-453.   DOI
94 Bahar, E., Kim, H. and Yoon, H. (2016) ER stress-mediated signaling: action potential and Ca(2+) as key players. Int. J. Mol. Sci. 17, 1558.   DOI
95 Baldwin, H. A., Colado, M. I., Murray, T. K., De Souza, R. J. and Green, A. R. (1993) Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine. Br. J. Pharmacol. 108, 590-596.   DOI
96 Barco, A., Patterson, S. L., Alarcon, J. M., Gromova, P., Mata-Roig, M., Morozov, A. and Kandel, E. R. (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48, 123-137.   DOI
97 Park, J. H., Seo, Y. H., Jang, J. H., Jeong, C. H., Lee, S. and Park, B. (2017) Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J. Neuroinflammation 14, 240.   DOI
98 Nickell, J. R., Siripurapu, K. B., Vartak, A., Crooks, P. A. and Dwoskin, L. P. (2014) The vesicular monoamine transporter-2: an important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse. Adv. Pharmacol. 69, 71-106.   DOI
99 Ohno, M., Yoshida, H. and Watanabe, S. (1994) NMDA receptormediated expression of Fos protein in the rat striatum following methamphetamine administration: relation to behavioral sensitization. Brain Res. 665, 135-140.   DOI
100 Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G. and Barr, A. M. (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 129, 167-179.   DOI
101 Riddle, E. L., Fleckenstein, A. E. and Hanson, G. R. (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 8, E413- E418.   DOI
102 Robbins, T. W., Ersche, K. D. and Everitt, B. J. (2008) Drug addiction and the memory systems of the brain. Ann. N. Y. Acad. Sci. 1141, 1-21.   DOI
103 Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I. and Partilla, J. S. (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39, 32-41.   DOI
104 Ruscher, K. and Wieloch, T. (2015) The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration. J. Pharmacol. Sci. 127, 30-35.   DOI