• Title/Summary/Keyword: Neuron chip

Search Result 43, Processing Time 0.021 seconds

Design of Synchronous Quaternary Counter using Quaternary Logic Gate Based on Neuron-MOS (뉴런 모스 기반의 4치 논리게이트를 이용한 동기식 4치 카운터 설계)

  • Choi Young-Hee;Yoon Byoung-Hee;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, quaternary logic gates using Down literal circuit(DLC) has been designed, and then synchronous Quaternary un/down counter using those gates has been proposed The proposed counter consists of T-type quaternary flip flop and 1-of-2 threshold-t MUX, and T-type quaternary flip flop consists of D-type quaternary flip flop and quaternary logic gates(modulo-4 addition gates, Quaternary inverter, identity cell, 1-of-4 MUX). The simulation result of this counter show delay time of 10[ns] and power consumption of 8.48[mW]. Also, assigning the designed counter to MVL(Multiple-valued Logic) circuit, it has advantages of the reduced interconnection and chip area as well as easy expansion of digit.

A Neural Network Design using Pulsewidth-Modulation (PWM) Technique (펄스폭변조 기법을 이용한 신경망회로 설계)

  • 전응련;전흥우;송성해;정금섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2002
  • In this paper, a design of the pulsewidth-modulation(PWM) neural network with both retrieving and learning function is proposed. In the designed PWM neural system, the input and output signals of the neural network are represented by PWM signals. In neural network, the multiplication is one of the most commonly used operations. The multiplication and summation functions are realized by using the PWM technique and simple mixed-mode circuits. Thus, the designed neural network only occupies the small chip area. By applying some circuit design techniques to reduce the nonideal effects, the designed circuits have good linearity and large dynamic range. Moreover, the delta learning rule can easily be realized. To demonstrate the learning capability of the realized PWM neural network, the delta learning nile is realized. The circuit with one neuron, three synapses, and the associated learning circuits has been designed. The HSPICE simulation results on the two learning examples on AND function and OR function have successfully verified the function correctness and performance of the designed neural network.

Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1 (Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상)

  • Lee, Joon-Noh;Yang, Byung-Hwan;Choi, Seung-Hak;Kim, Seok-Hyun;Chai, Young-Gyu;Jung, Kyoung-Hwa;Lee, Jun-Seok;Choi, Kang-Ju;Kim, Young-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF