• Title/Summary/Keyword: Neuroinflammatory diseases

Search Result 36, Processing Time 0.028 seconds

Inhibition of lyosphosphatidic acid receptor 1 signaling in periodontal ligament stem cells reduces inflammatory paracrine effect in primary astrocyte cells

  • Kim, Dong Hee;Seo, Eun Jin;Kim, Young Hwan;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.25-31
    • /
    • 2022
  • Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer's disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.

Sphingolipids in neuroinflammation: a potential target for diagnosis and therapy

  • Lee, Ju Youn;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system. Accumulating evidence points to sphingolipid engagement in neuroinflammatory disorders, including Alzheimer's and Parkinson's diseases. Abnormal sphingolipid alterations, which involves an increase in ceramide and a decrease in sphingosine kinase, are observed during neuroinflammatory disease. These trends are observed early during disease development, and thus highlight the potential of sphingolipids as a new therapeutic and diagnostic target for neuroinflammatory diseases.

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu;Mok, Hyejung;Yeo, Woon-Seok;Ahn, Joong-Hoon;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.599-609
    • /
    • 2021
  • Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon;Yoo, Hyung-Seok;Ju, Yeon-Joo;Oh, Myung Sook;Lee, Kyung-Tae;Inn, Kyung-Soo;Kim, Nam-Jung;Lee, Jong Kil
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.210-217
    • /
    • 2018
  • Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.

Methylcobalamin as a candidate for chronic peripheral neuropathic pain therapy: review of molecular pharmacology action

  • Amilia Ramadhani;Indwiani Astuti;Maria Goreti Widiastuti;Nunuk Purwanti
    • The Korean Journal of Pain
    • /
    • v.37 no.4
    • /
    • pp.299-309
    • /
    • 2024
  • Chronic peripheral neuropathic pain therapy currently focuses on modulating neuroinflammatory conditions. Methylcobalamin (MeCbl), a neuroregenerative agent, modulates neuroinflammation. This review aimed to explore the molecular pharmacology action of MeCbl as a chronic peripheral neuropathic pain therapeutic agent. MeCbl plays a role in various cellular processes and may have therapeutic potential in neurodegenerative diseases. Intracellular MeCbl modulates inflammation by regulating the activity of T lymphocytes and natural killer cells as well as secretion of inflammatory cytokines, namely, tumor necrosis factor-α, interleukin-6, interleukin-1β, epidermal growth factor, and neuronal growth factor. MeCbl can reduce pain symptoms in chronic neuropathic pain conditions by decreasing excitation and hyperpolarization-induced ion channel activity in medium-sized dorsal root ganglion (DRG) neurons and the expression of transient receptor potential ankyrin 1, transient receptor potential cation channel subfamily M member 8, phosphorylated p38MAPK, transient receptor potential cation channel subfamily V members 1 and 4 in the DRG, and the voltage-gated sodium channel in axons.

The Anti-depressive Effect of Rehmanniae Radix Preparata via Anti-inflammatory Activity (숙지황 추출물의 항염증 작용을 통한 항우울 효과)

  • Kim, Eung Sun;Chong, Myongsoo
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Objectives: Rehmanniae Radix Preparata (RRP) has been used as a traditional remedy to treat gynecology and endocrine diseases. Recently, studies on antioxidant and anti-inflammatory effects of RRP have been reported, so it was judged that RRP extracts would have an anti-depressive effect. Methods: We investigated the anti-neuroinflammatory and anti-depressive effect of RRP on lipopolysaccharide (LPS)-induced depression and LPS-stimulated BV2 microglia. RRP inhibited the LPS-stimulated excessive release of nitrite in the BV2 cells. RRP also significantly inhibited the inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in LPS-stimulated BV2 microglial cells. Results: RRP significantly suppressed the LPS-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-𝜅B activation. In addition, administration of RRP not only inhibited the immobility time in the forced swimming test (FST) but also increased the total travel distance in the open field test (OFT). Also, RRP inhibited the elevation of TNF-alpha, IL-1beta, and IL-6 in brain of LPS-injected mice. Conclusions: Considering the overall results, our study showed that RRP exhibited the anti-neuroinflammatory and anti-depressive activities via deactivation of MAPKs and NF-𝜅B.

Anti-neuroinflammatory Effects of Hwanggeumjakyak-tang on Lipopolysaccharide-induced Brain Injury Model in vivo and in vitro (지질다당류로 유발한 염증성 뇌손상 동물모델에 대한 황금작약탕의 억제효과 연구)

  • Kim, Jong-gyu;Im, Ji-sung;An, Sung-Hu;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives Hwanggeumjakyak-tang (HJT) has traditionally been used to treat gastrointestinal inflammatory diseases; however, its protective effects against neuronal inflammation are still undiscovered. Methods We investigated the anti-neuroinflammatory effects of HJT water extract on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells. BV2 cells were treated with LPS (1 ㎍/mL) 1 hour prior to the addition of HJT. We measured cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and nitrite production using the Griess assay. We performed a reverse transcription-polymerase chain reaction assay to measure messenger RNA expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Western blot analysis was performed to determine protein expression of mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor kappa B (NF-κB)α. Results HJT inhibited excessive nitrite release in LPS-stimulated BV2 cells and also significantly inhibited inflammatory cytokines such as IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 cells. Moreover, HJT significantly suppressed LPS-induced MAPK and NF-κB activation and inhibited the elevation of IL-1β, IL-6, and TNF-α in the brain of LPS-injected mice. Conclusions Our study highlights the anti-neuroinflammatory effects of HJT via MAPK and NF-κB deactivation.

Comparative Study of Achyranthes japonica Nakai and Achyranthes bidentata Blume on Anti-Neuroinflammatory and Neuroprotective Effects (토우슬(土牛膝), 회우슬(懷牛膝)의 항신경염증 및 신경세포 보호 효과 비교)

  • Siyeon Park;Yujin Choi;Seungmin Lee;In Gyoung Ju;Myung Sook Oh
    • The Korea Journal of Herbology
    • /
    • v.39 no.5
    • /
    • pp.31-38
    • /
    • 2024
  • Objectives : Achyranthes japonica Nakai (AJ) and Achyranthes bidentata Blume (AB) have been used without distinguishment. Moreover, comparative studies of AJ and AB on physiological activity in the organism levels remain fully understood. In this study, we aimed to evaluate and compare the effects of AJ and AB on anti-neuroinflammatory and neuroprotective effects. Methods : AJ and AB were extracted with distilled water (DW) and 70% ethanol (EtOH) extract. For the evaluation of anti-neuroinflammatory effects, we measured the production of nitric oxide (NO) in lipopolysaccharide (LPS)-treated BV2 microglial cells. To evaluate the neuroprotective effects, we assessed cell viability against toxicity, including hydrogen peroxide (H2O2), 6-hydroxydopamine (6-OHDA), and amyloid-beta (A𝛽), respectively, in PC12 or HT22 cells. Results : DW and 70% EtOH extracts of AJ and AB inhibited LPS-induced NO production in BV2 cells, with no significant differences between the origins and extraction solvents. Additionally, AJ and AB had no cytotoxicity, and exhibited the similar neuroprotective effects against H2O2 and 6-OHDA toxicities in PC12 cells, showing stronger activity in 70% EtOH extract compared to the DW extract. Furthermore, 70% EtOH extracts of AJ and AB protected neuronal cell against A𝛽 toxicity-induced cytotoxicity in HT22 cells. Conclusions : We demonstrated that AJ and AB have anti-neuroinflammatory and neuroprotective effects in the 70% EtOH extract compared to DW extract, with no significant differences between the species. These results suggested that AJ and AB would be the potential candidates for neurodegenerative diseases.

Comparative study of antioxidant and anti-neuroinflammatory activity of leaf extracts of three different species of Bamboos in different extraction solvents containing caffeic acid, p-coumaric acid and tricin (왕대, 조릿대, 오죽의 추출 용매에 따른 항산화, 신경염증제어 활성 및 지표성분 caffeic acid, p-coumaric acid, tricin의 함량 비교)

  • Kim, Yon-Suk;Cho, Duk-Yeon;Kim, Mikyung;Choi, Dong-Kug
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.296-303
    • /
    • 2021
  • The antioxidant and anti-neuroinflammatory activities of water, 30, 70, and 100% ethanol extracts of leaves of three different species of bamboo (Phyllostachys nigra, P. bambusoides, and Sasa borealis) were investigated. The levels of total polyphenol and flavonoid were measured, and antioxidant activity was evaluated using various antioxidant assays (DPPH, ABTS, and FRAP). Lipopolysaccharide (LPS)-induced BV2 microglial cell activation was used to evaluate the anti-neuroinflammatory properties of the bamboo leaf extracts. Treatment with both aqueous and ethanolic extracts showed no cytotoxicity in BV-2 microglial cells. Pre-treatment of BV-2 cells with bamboo leaf extracts significantly inhibited LPS-induced excessive production of nitric oxide in a dose-dependent manner. Moreover, phytochemical analysis based on the extraction solvent showed that caffeic acid, p-coumaric acid, and tricin are the principal constituents of all three bamboo leaf extracts. Therefore, our findings suggest that bamboo leaf extract contains potent antioxidants and anti-neuroinflammatory compounds that can be used as potential therapeutic agents for the treat neuroinflammatory diseases.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.