• Title/Summary/Keyword: Neuro-fuzzy Systems

Search Result 214, Processing Time 0.023 seconds

Design of Fuzzy PID Controller Using GAs and Estimation Algorithm (유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF

Chaos Simulator as a Developing Tool for Application of Chaos Engineering

  • Kuwata, Kaihei;Kajitani, Yuji;Katayama, Ryu;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.853-856
    • /
    • 1993
  • In this paper, we describe a chaos simulator as a developing tool for applications of chaos engineering. This simulator is composed of three modules, such as generation module of chaotic signals by deterministic rules, determination module whether observed time series is chaos or not, and nonlinear system identification module by self generating Neuro Fuzzy Model.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Neuro-Fuzzy control of converging vehicles for automated transportation systems (뉴로퍼지를 이용한 자율운송시스템의 차량합류제어)

  • Ryu, Se-Hui;Park, Jang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.907-913
    • /
    • 1999
  • For an automated transportation system like PRT(Personal Rapid Transit) system or IVHS, an efficient vehicle-merging algorithm is required for smooth operation of the network. For management of merging, collision avoidance between vehicles, ride comfort, and the effect on traffic should be considered. This paper proposes an unmanned vehicle-merging algorithm that consists of two procedures. First, a longitudinal control algorithm is designed to keep a safe headway between vehicles in a single lane. Secondly, 'vacant slot and ghost vehicle' concept is introduced and a decision algorithm is designed to determine the sequence of vehicles entering a converging section considering energy consumption, ride comfort, and total traffic flow. The sequencing algorithm is based on fuzzy rules and the membership functions are determined first by an intuitive method and then trained by a learning method using a neural network. The vehicle-merging algorithm is shown to be effective through simulations based on a PRT model.

  • PDF

Identification of Fuzzy Systems by means of the Extended GMDH Algorithm

  • Park, Chun-Seong;Park, Jae-Ho;Oh, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • A new design methology is proposed to identify the structure and parameters of fuzzy model using PNN and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and cubic besides the biquadratic polynomial used in the GMDH. The FPNN(Fuzzy Polynomial Neural Networks) algorithm uses PNN(Polynomial Neural networks) structure and a fuzzy inference method. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here a regression polynomial inference is based on consequence of fuzzy rules with a polynomial equations such as linear, quadratic and cubic equation. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture. In this paper, we will consider a model that combines the advantage of both FPNN and PNN. Also we use the training and testing data set to obtain a balance between the approximation and generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

A study on the application of the intelligent control algorithms to the flow control system (유량제어계통에 대한 지능형 제어 알고리즘 적용연구)

  • 김동화;조일인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1792-1795
    • /
    • 1997
  • It is difficulte to control in the flow system because there are many disturbance. So it is impossible to control delicately sometimes by PI or PID. In this paper, we study on the application of intellignet control algorithms such as 2DOF PID control, neural network, Fuzzy contro, Relay feedback to the flow control system. the resultings are 2DOF-PID control is more good response.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.