20018 = CHEHN7|E3]/haidRIZets AlAAAI0| R0k 88 FAEU3 =23 (2001.11.24)

Design of Fuzzy PID Controller Using GAs and Estimation Algorithm

. Seok-Bsom Roh and Sung-Kwun Oh
School of Electrical and Electronic Enginesring. Wonkwang University

Abstract - In this paper, a new approach to estimate
scaling factors of fuzzy controllers such as the fuzzy PID
controller and the fuzzy PD controller is presented. The
performance of the fuzzy controller is sensitive to the variety
of scaling factors(1). The design procedure dwells on the use
of evolutionary computing{a genetic algorithm) and
estimation algorithm for  dynamic systems (the inverted
pendulum). The tuning of the scaling factors of the fuzzy
controller is essential to the entire optimization process. And
then we estimate scaling factors of the fuzzy controller by
means of two types of estimation algorithms such as
Neuro-Fuzzy model, and regression polymomial (7). This
method can be applied to the nonlinear system as the
inverted pendulum. Numerical studies are presented and a
detailed comparative analysis is also included.

1.4 £

The ongoing challenge for advanced system control ha s
resulted in a diversity of design methodologies and
detailed algorithms. Fuzzy controllers have positioned
themselves in the dominant role at the knowledge-rich
spectrum of control algorithms. The advantages of the
fuzzy controllers manifest by their suitability for nonlinear
systems (as they are nonlinear mappings in the first
place) and for high deviations from the set point. The
intent of this study is to develop. optimize and experiment
with the fuzzy controller (the fuzzy PD controller or the
fuzzy PID controller). One of the difficulties in controlling
complex systems is to derive the optimal control
parameters such as linguistic control rules. scaling factors,
and membership functions of the fuzzy controller. With
this regard, genetic algorithms (GAs) have already started
playing an important role as a mechanism of global search
of the optimal parameters of such controllers. However, in
controlling a nonlinear plant such as the inverted
pendulum of which initial states vary in each case, the
performance. of controllers may become poor, since the
control parameters of the fuzzy controller cannot be easily
adapted to the changing initial states such as angular
position and angular velocity. To alleviate the above
shortcoming, we use three types of estimation algorithms
such as HCM (Hard C-Means) clustering method,
Neuro-fuzzy model, and regression polynomial, and then
estimate the parameters of the controller in each case.
The paper includes the experimental study dealing the
inverted pendulum. The performance of systems under
control is evaluated from the viewpoint of ITAE (Integral
of the Time multiplied by the Absolute value of Error) and
overshoot {1).

2.1 Fuzzy PID Controller

The block diagram of fuzzy PID controller is shown in Figure 1.
Referring to Figure 1, we confine to the following notation. e
denotes the error between reference and response (output of the
system under control), &e is the first-order difference of error
signal while &% is the second-order difference of the error. Note
that the input variables to the fuzzy controller are transformed
by the scaling factors (GE, GD, GH. and GC) whose role is to
allow the fuzzy controller to see the external world to be
controlled.

.
e [ T
sontroller *&

Figure 1. An overall architecture of the fuzzy PID controlier

The above fuzzy PID controller consists of rules of the form (9J(10]

R if Eis Ay and 4E is Ay and A%F is Ay then U is I}

The capital letters standing in the nule (B) demote fuzzy variables
(linguistic terms) whereas D is a numeric value (singleton) of
the control action. In each control nule, a level of its activation
is computed in a standard fashion (1). The inferred. value of
consequence part is converted into numeric values with the aid
of (Z-1){11].

w;= min{gs (E) , us(E) , uc(LE)) I6))
4U*= ,21 w; D/ g:xwi 2-1
utk) =Uk)xGC (2-2)

The collection of the rules is shown in Table 1.

Table 1 Fuzzy control rules
(a) In case of 2-fuzzy variables
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W: use triangular membership functions defined in the
input and output spaces: see Figure 2 and 3. Here these
spaces are normalized to the [~1, 1} interval

2.2 Auto—tuning of the fuzzy controller by
GAs

Genetic algorithms (GAs) are the search algorithms inspired
by Nature in the sense that we exploit a fundamental concept
of a survival of the fittest as being encountered in selection
mechanisms among species. In GAs, the search variables are
encoded in bit strings called chromosomes. They deal with a
population of chromosomes with each representing a possible
solution for a given problem. A chromosome has a fitness
value that indicates how good a solution represented by it is.
In control applications, the chromosome represents the
controllers adjustable parameters and fitness value is a
quantitative measure of the performance of the controller.
In general, the population size, a number of bits used for
binary coding, crossover rate, and mutation rate are specified
in advance. The genetic search is guided by a reproduction:
mutation, and crossover. Each of these phases comes with a
set of specific numeric parameters characterizing the phase.
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In this study, the number of generations is set to 100,
crossover rate is equal to (0.6, while the mutation rate is
taken as 0.35. The number of bits used in the coding is equal
to 10. Let us recall that this involves tuning of the scaling
factors and a construction of the control rules. These are
genetically optimized. We set the initial individuals of GAs
using three types of parameter estimation modes such as a
basic mode, contraction mode and expansion mode. In the
case of a basic mode (BM), we use scaling parameters that
normalize error between reference and output, one level error
difference and two level error difference by (-1, 1) for the
initial individuals in the GA. In a contraction mode (CM), we
use scaling parameters reduced by 25% in relation to the
basic mode. While in the expansion mode (EM), we use
scaling parameters enlarged by 25% from a basic mode. The
standard ITAE expressed for the reference and the output of
the system under control is treated as a fitness function (2].
The design procedure consists of the following steps

{step 1) Select the general structure of the fuzzy controller
according to the purpose of control and dynamics of the process.
In particular, we corsider architectural options. (PID, FPD(Flrzy
PD). and FPID (Fuzzy PID) controller)

(step 2] Define the number of fuzzy sets for each variable and
set up initial control rules, refer to Flgure 2 and 3.

(step 3) Form a collection of initial individuals of GAs. This
involves the following

1. set the initial individuals of GAs for the scaling factor of fuzzy
controller. The scaling factors can be described as normalized
coefficients. Each scaling factor is expressed by (3).

Figure 2 illustrates three types of estimation modes of the scaling
factor being used in setting the initial individuals of GaAs
describing the fuzzy controller.

E(kT)=error(kT)xGE (3.a)
JE(KT ) ={error{kT) —error(k — 1 YT IXGD (3.b)
AE(XT) =[error(kT ) — 2error(k— 1)T
+errorlk—2)TIXGH (3.¢)

U(KT) = Ulk—1)T + AU (kT )xGC (3.4
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Figure 2. Three types of estimation modes for the scaling factors:
basic, expansion, and contraction

(step 4) Here, all the control parameters such as the scaling
factors GE, GD, GH and GC are tuned at the same time.

2.3 The Estimation Algorithm

Algorithm 1-1: Neuro-fuzzy model

Let us consider an extension of the network with the fuzzy
partition realized by fuzzy relations. Figure 3 illustrates an
architecture of such FNN for two-input and one-output, where
each input assumes three membership functions. The node
indicated I' denotes a Cartesian product, whose output is the
product of all the incoming signals. As before, N denotes the
normalization of the membership grades.
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Figure 3 FNN structure by means of the fuzzy space partition
realized by fuzzy relations

In the language of the rule-based systems, the structure is
equivalent to the following collection of rules.
RV If oxy Ap and < x4 is Ay then 3, = wy

R x Ay and = 5y is Ay then ;= w, (4)

R If x, Ay and - x, is Ay then y, = w,

The fuzzy rdles in equation (4) constitute overall networks of modified
FNN such as shown in Figire 3. The output £ of each node generates
a final output 3 fo the form

y= Z}‘F )j_‘,E - w= ,Z::. -l gu, 5)

The learning of the NFN is realized by adjusting connections of the
neurons and as such it follows a standard Back-Propagation
(BP) algorithm. In this study, we use the Euclidean error
distances

E= 305, 5 ®

where Yris the p-th target output data, Y»stands for the p—th
actual output of the model for this specific data points N is
total input-output data pairs, and E is a sum of the errors.

As far as learning is concerned, the connections change as
follows.

Wonew) = wlold) + aw ()
where the update formula follows the gradient descent method

JE 3E, a3, Of
"”’*‘”'(_—ai) =—fs'7yf'*§%f-3; (8)
=2 a5

with 7 being a positive learning rate. Quite commonly to
accelerate convergence, a momentum term is being added to
the learming expression. Combining (8) and a momentum
term, the complete update formula combining the already
discussed components s
dw=2 -7+ (¥,— INE it a(wd D~ wi(t—1)) 9)
(Here the momentum coefficient, @ , is constrained to the unit
interval).
Algorithm 1-2: Genetie Algorithms + Neurofuzzy model
In this algorithm, to optimize the learning rate, momentum
term and fuzzy membership function of the above NFN we use
the genetic algorithm. We use 100 generations, 60 populations,
10 bits per string, crossover rate equal to 0.6, and mutation
probability equal to 0.35.
Algorithm 2: Polynomial model
To build a mathematical model we use n-order polynomial and
1LMS (Least Means Square) method. For this algorithm, we
use such type of polynomial as (10), and estimate coefficients
of the polynomial.
W= Cyt CLED + C8(D + -+ C )" (10

where 32 is model output, &(3) is input variable and Co , G
e+, Cn ave coeffidients. The problem is to determine the coefficients
in a such a way that the outputs computed from the model in
(10) agree as closely as possible with the measured variables
y(i) in the sense of least squares. That is, the coefficient C
should be chosen to minimize the least-squares error function

o, =1 50— ¥ Kok-en’or (1D

where @(HT=11 8 &) - &AD", C=(C C ~ GJ"
The { unction of (11 is minimal for coefficients C such that
o'eC=6"Y (12)

If the matrix 876 is nonsingular, the minimum is unigue
and given as the following

t=(8"e) o'y 13

Figure 4 depicts the detailed flowchart of the complete tuning
and estimating process.
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Figure 4. Overall tuning and estimating process

2.3 Simulation Study

The inverted pendulum system is composed of a rigid pole and
a cart on which the pole is hinged {(4}{5). The cart moves on
the rail tracks to its right or left, depending on the force
exerted on the cart. The pole is hinged to the car through a
frictionless free joint such that it has only one degree of
freedom. The control goal is to balance the pole starting from
nonzero conditions by supplying appropriate force to the cart.
In this study, the dynamics of the inverted pendulum system
are characterized by two state variables: &(angle of the
pole with respect to the vertical axis), @
(angular velocity of the pole}. The behavior of these
two state variables is governed by the following second-order
equation. The dynamic equation of the inverted pendulum is
shown as the following.
grinb+ cos 0(W—Q}

{A_Mﬁ)

3 m.tm

B (14)

Where g {(acceleration due to gravity) is 9.8m/52, mc (mass of
cart) is 1.0kg, m {mass of pole) is 0.5m, and F is the applied
force in newtons. Figure 5 shows auto-tuned scaling factors
according to the change of initial angle and angular velocity of
the inverted pendulum.

(c) (d)
Figure 5. Auto-tuned scaling factors according to the change
of initial angles (a) GE, (b) GD, (¢) GH and (d) GC
Table 2 shows the estimated scaling factors of fuzzy PID controller
and describes performance index (ITAE, Overshoot(%)) of the
fuzzy PID controller with the estimated scaling factors in case
that the initial angle of inverted pendulum is 0.78(rad) and

the initial angular velocity is  0.78(rad/sec)

respectively.
Table 2 the estimated scaling factors of fizzy FID controller and

describes performance index (ITAE. Overshoot(%)) of the fuzzy PID
controller

Estimation glgorithm ITAE QOvershoot,

1. Newro Fuzzy Moddl 5908313 4.154205
2. GA+Neum—F\12.z¥ Model 5.842924 3722670
3. Polynomial 6811258 7621215

Figure 6 demonstrates (a)pole angle (b)pole angular velocity
(c)state space of fuzzy PID controller for initial angle=0.78(rad)
and initial angular velocity=0.78(rad/sec) for each estimation
algorithm respectively.
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Figure 6 {a)pole angle (b)pole angular velocity (c)state space of fuzzy
PID cortroller for initidl ange=0.78(rad) and initial angular
velocity =0, 78(rad/sec) for each estirmation algorithm respectively.
3.4 2

In this paper. we propose the Fuzzy PID controller design
based on the methodology of tuning of control parameters
using GAs and estimating of control parameters using two
types of estimation algorithms. First, to set the initial
individual of GAs applied to controllers, we utilize the scaling
factor estimation modes such as BM, CM and EM. Scaling
factor estimation modes such as BM, CM and EM which are
determined by means of relation between reference, process
error and gain respectively is used to set the initial individual
of GAs for fuzzy controller. Second, we estimate the control
parameters such as GE, GD, GH, and GD by using two types
of estimation algorithms so that we may improve the control
performance of the fuzzy PID controller in case that the initial
states of the inverted pendulum change. From the sinmudation
studies, using genetic optimization by scaling factor
estimation modes and three types of estimation algorithms, we
show that whenever the initial values of the inverted
pendulum system are changed, the fuzzy PID controller with
control parameters such as GE, GD, GH and GC estimated by
estimation algorithm controls effectively the inverted
pendulum system. Based on this study, for the performance
improvement of output of the inverted pendulum we can
consider the advanced estimation algorithms mentioned in the
following.

1. Adopt FCM method to estimate the control parameters.

2. Use MIMO (Multi Input Multi Output) Neuro~Fuzzy Model
to estimate the control parameters.
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