• Title/Summary/Keyword: Neuro-Pathway

Search Result 28, Processing Time 0.035 seconds

The Comparisons of 4 Channel Auditory Brainstem Response for Tracking Auditory Neuro-Pathway

  • Woo, Jin-Wan;Lee, Sang-Min;Hong, Sung-Hwa;Sung, Young-Ju;Park, Sook-Kyoung;Lee, Yong-Hee;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • The Auditory Brainstem Response (ABR) with a click stimulation in guinea pigs was used to examine the auditory neuro-pathway from the cochlear nucleus to brain. Using multi-channel active electrodes, the 3-dimensional auditory pathway was examined from the cochlea to the inferior colliculus through the brainstem. These results are similar to the well-known neuro-pathway. This study on the multi-channel ABR shows that the positions of the ABR generators move to the central brain and the contralateral pathway. It is generally agreed that the ABR is generated by some structures along the auditory pathway. This study provides some information on the neuro-pathway where the ABR peak is generated.

MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, Eun-A;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.447-452
    • /
    • 2022
  • Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)-induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p.

Estimating Neuro-Pathway from Visual and Somatosensory Evoked Potential (유발전위를 이용한 뇌의 시감각 및 체성감각 인지영역 추정기술)

  • 배병훈;김동우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.481-488
    • /
    • 1994
  • In this paper a study of neuro-pathway estimation based on visual and somatosensory evoked potential is given. The evoked potentials which are caused by visual and somatosensory stimulation are detected by an average method. The forward problem that is estimating a scalp potential from a given electrical source in the brain is solved by using a triple concentric spherical shell model of the head and a single current dipole model of the neuron activity. The inverse problem which calculates a source position is solved by a least square fit between the model predicted potential and a given evoked potential measurement. The similarities between estimated sensory neuro-pathways and physiological brain function regions are verified.

  • PDF

The Gene Expression Profile of LPS-stimulated Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • This study was conducted to evaluate the inflammatory mechanisms of LPS-stimulated BV-2 microglial cells. The inflammation mechanism was evaluated in BV-2 cells with or without LPS treated using the Affymetrix microarray analysis system. The microarray analysis revealed that B cell receptor signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, MAPK signaling pathway, Neuro-active ligand-receptor interaction, TLR signaling path-way, and T cell receptor signaling pathway-related genes were up-regulated in LPS stimulated BV-2 cells. Selected genes were validated using real time RTPCR. These results can help an effective therapeutic approach to alleviating the progression of neuro-in-flammatory diseases.

Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway

  • Zhao, Dong;Gu, Ming-Yao;Xu, Jiu Liang;Zhang, Li Jun;Ryu, Shi Yong;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2019
  • Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, prostaglandin (PG) $E_2$, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated $Akt/IKK/NF-{\kappa}B$ pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and $TNF-{\alpha}$ by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting $Akt/IKK/I{\kappa}B/NF-{\kappa}B$ pathway and promoting Nrf-2/HO-1 pathway.

The Effect of Acupuncture in Promoting Neurogenesis and Angiogenesis after Middle Cerebral Artery Occlusion in Rats

  • Lee, Hong Min;Nam, Sang Soo;Kim, Yong Suk
    • Journal of Acupuncture Research
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : This study was performed to choose more effective neuro-protective acupuncture point and to verify the effect of acupuncture in promoting neurogenesis and angiogenesis as a result of its neuro-vasculo-regenerative effect in middle cerebral artery occlusion model in rats. Methods : By TTc staining we chose the most effective acupuncture point with neuro-protection. We randomly divided into four groups: Such as (1) sham group(with sham-operation), (2) sham+acupuncture group(with sham-operation), (3) middle cerebral artery occlusion group, (4) MCAO+AT group. Acupuncture procedure was performed for four days. Total RNA was extracted using TRIzol reagent, according to the manufacturer's instructions, and was purified using an RNAeasy mini kit. Immuno-histochemistry was performed using primary antibody mouse anti-BrdU, NeuN, Dcx, and VEGF. Results : We found that $ST_{36}$ had the more neuroprotective effect than $LI_{11}$ and $SP_3$. The microarray analysis revealed that 54 genes were more expressed neurogenesis pathway in MCAO+AT group compared with MCAO group(fold changes greater than or equal to twofold change). 11 genes were more expressed angiogenesis pathway. And 7 genes were more expressed VEGF pathway. Immuno-histochemistry revealed that cell proliferation, cell migration and cell maturation were increased. Conclusions : This study demonstrated that acupuncture on $ST_{36}$ had neuro-protective and neuro-restorative effect in ischemic brain injuries. And its mechanism might be related to promote neurogenesis and angiogenesis. These results suggest that acupuncture have potential benefits for the treatment of ischemic stroke.

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia;Kumar, Shiv;Kim, Daniel H.;Rafiq, Khezina;Kumar, Vijay;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1061-1071
    • /
    • 2018
  • From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.

Cervical Epidural Block Can Relieve Persistent Hiccups -Case report- (경부 경막외 신경차단을 이용한 2주간 계속된 딸꾹질의 치료 경험 -증례보고-)

  • Lee, Kyung-Jin;Park, Won-Sun;Chun, Tae-Wan;Kim, Chan;Nam, Yong-Taek
    • The Korean Journal of Pain
    • /
    • v.8 no.1
    • /
    • pp.131-134
    • /
    • 1995
  • Hiccup is characterized by a myoclonus in the diaphragm, resulting in a sudden inspiration associated with an audible closure of the glottis. The reflex arc in hiccups comprises three pars: an afferent, a central and an efferent part. The afferent portion of the neural pathway of hiccup formation is composed of the vagus nerve, the phrenic nerve, and the sympathetic chain arising from T6 to T12. The hiccup center is localised in the brain stem and the efferent limb comprises phrenic pathways. All stimuli affecting the above mentioned reflex arc may produce hiccups. The pathogenesis of persistent hiccups is not known. Hiccup can present a symptom of a subphrenic abscess or gastric distention, and metabolic alterations may also cause hiccups. Numerous treatment modalities have been tried but with questionable success. We describe a patient whose persistant hiccups was treated successfully by a cervical epidural block.

  • PDF

Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

  • Seo, Hyunhyo;Lee, Kyungmin
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2016
  • Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis.

Leptomeningeal Metastasis in Gliomas : Clinical Characteristics and Risk Factors

  • Jeyul Yang;Ji-Woong Kwon;Sang Hoon Shin;Heon Yoo;Kyu-Chang Wang;Sang Heyon Lee;Ho-Shin Gwak
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.465-475
    • /
    • 2023
  • Objective : Our objective is to analyze the occurrence, clinical course and risk factors for glioma patients with leptomeningeal metastasis (LM) according to different metastasis patterns and clinical variables. Methods : We retrospectively reviewed data from 376 World Health Organization (WHO) grade II-IV adult glioma patients who were treated in the National Cancer Center from 2001 to 2020. Patients who underwent surgery at other institutions, those without initial images or those with pathologically unconfirmed cases were excluded. LM was diagnosed based on magnetic resonance imaging (MRI) findings or cerebrospinal fluid (CSF) cytology. The metastasis pattern was categorized as nodular or linear according to the enhancement pattern. Tumor proximity to the CSF space was classified as involved or separated, whereas location of the tumor was dichotomized as midline, for tumors residing in the thalamus, basal ganglia and brainstem, or lateral, for tumors residing in the cerebral and cerebellar hemispheres. Results : A total of 138 patients were enrolled in the study. A total of 44 patients (38%) were diagnosed with LM during a median follow-up of 9 months (range, 0-60). Among the clinical variables, tumor proximity to CSF space, the location of the tumor and the WHO grade were significant factors for LM development in univariate analysis. In multivariate analysis, the midline location of the tumor and WHO grade IV gliomas were the most significant factor for LM development. The hazard ratio was 2.624 for midline located gliomas (95% confidence interval [CI], 1.384-4.974; p=0.003) and 3.008 for WHO grade IV gliomas (95% CI, 1.379-6.561; p=0.006). Conclusion : Midline location and histological grading are an important factor for LM in glioma patients. The proximity to the CSF circulation pathway is also an important factor for WHO grade IV glioma LM. Patients carrying high risks should be followed up more thoroughly.