• Title/Summary/Keyword: Neural protection

Search Result 86, Processing Time 0.022 seconds

Embryonic Effects of Ultrasound Irradiation on Preimplantation Stage of ICR Mouse Embryos - About embryonic death and malformation of ultrasound mechanisms - (초음파(超音波)에 대한 ICR Mouse 착상전기(着床前期)의 개체(個體) Level 영향(影響)(기형(奇形).배사망.(胚死亡))으로부터 초음파(超音波)의 물리학적(物理學的) 특성(特性)에 대한 연구(硏究))

  • Song, Jae-Kwan;Kim, Ye-Hyun
    • Journal of radiological science and technology
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1995
  • Embryos and fetuses are more sensitive to various environmental agents than adults of children biological effects following the exposure, such as intrauterin, malformation, have intimate conception with the prenatal exposure. There have been many studies on radiation and other agent. However, imformation about the ultrasound effects is limited. It is very important to study the effect of ultrasound with these kinds of fatera in consideration of ultrasound protection and safty. In this study, embryonic and fefal effects of ICR mouse embryos irradiated on 24, 48, 12 and 192 hpc of preimplantation and organogenesis period at the intensity of $0.5{\sim}3\;W/cm^2$ were investigated. Many type of external malformation observed in mouse irradiated on 72 hpc and 192 hpc. However, the embryos irradiated on 24 hpc and 48 hpc, at witch embryos had less then 6 cells and were pre-compaction stage, had no sensitivity for external malformation. The threshold doses of external malformation in mouse irradiated on 72 hpc and 192 hpc, at which embryos were consisted of $16{\sim}32$ cells and neural formation stage, were $1\;W/cm^2$ and $0.5\;W/cm^2$.

  • PDF

A Study of Split Learning Model to Protect Privacy (프라이버시 침해에 대응하는 분할 학습 모델 연구)

  • Ryu, Jihyeon;Won, Dongho;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2021
  • Recently, artificial intelligence is regarded as an essential technology in our society. In particular, the invasion of privacy in artificial intelligence has become a serious problem in modern society. Split learning, proposed at MIT in 2019 for privacy protection, is a type of federated learning technique that does not share any raw data. In this study, we studied a safe and accurate segmentation learning model using known differential privacy to safely manage data. In addition, we trained SVHN and GTSRB on a split learning model to which 15 different types of differential privacy are applied, and checked whether the learning is stable. By conducting a learning data extraction attack, a differential privacy budget that prevents attacks is quantitatively derived through MSE.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Collision Hazards Detection for Construction Workers Safety Using Equipment Sound Data

  • Elelu, Kehinde;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.736-743
    • /
    • 2022
  • Construction workers experience a high rate of fatal incidents from mobile equipment in the industry. One of the major causes is the decline in the acoustic condition of workers due to the constant exposure to construction noise. Previous studies have proposed various ways in which audio sensing and machine learning techniques can be used to track equipment's movement on the construction site but not on the audibility of safety signals. This study develops a novel framework to help automate safety surveillance in the construction site. This is done by detecting the audio sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of imminent dangers of mobile equipment. The scope of this study is focused on developing a signal processing model to help improve the audible sense of mobile equipment for workers. This study includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-based machine learning model for automated detection of collision hazards to be integrated into intelligent hearing protection devices, and (c) conduct field experiments to investigate the system' efficiency and latency. The outcomes showed that the proposed model detects equipment correctly and can timely notify the workers of hazardous situations.

  • PDF

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Digital Watermarking Technique using self-similarity (자기유사성을 이용한 디지털 워터마킹 기법)

  • Lee, Mun-Hee;Lee, Young-hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper. we propose a new digital watermarking technique which uses the self-similarity of OCT(Discrete Cosine Transform) coefficients for the ownership protection of an image, similar coefficients are classified by SOM(Self-Organizing Map) out of Neural Network. The watermark is inserted into the selected cluster among clusters which consist of coefficients. Generally, the inserted watermark in high frequency regions of an image is eliminated by the compression process such as JPEG compressions, and the inserted watermark in low frequency regions of an image causes the distortion of an image quality. Therefore, the watermark is inserted into the cluster that has many coefficients in the middle frequency regions. This algorithm reduces the distortion of an image quality because of inserting the watermark into an image according to the number of coefficients in selected cluster. To extract watermarks from the watermarked image, the selected cluster is used without an original image. In the experiment, the new proposed algorithm have a good quality and endure attacks(JPEG compressions, filtering. zoom in, zoom out, cropping, noises) very well.

  • PDF

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

A Study on Detection of Small Size Malicious Code using Data Mining Method (데이터 마이닝 기법을 이용한 소규모 악성코드 탐지에 관한 연구)

  • Lee, Taek-Hyun;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, the abuse of Internet technology has caused economic and mental harm to society as a whole. Especially, malicious code that is newly created or modified is used as a basic means of various application hacking and cyber security threats by bypassing the existing information protection system. However, research on small-capacity executable files that occupy a large portion of actual malicious code is rather limited. In this paper, we propose a model that can analyze the characteristics of known small capacity executable files by using data mining techniques and to use them for detecting unknown malicious codes. Data mining analysis techniques were performed in various ways such as Naive Bayesian, SVM, decision tree, random forest, artificial neural network, and the accuracy was compared according to the detection level of virustotal. As a result, more than 80% classification accuracy was verified for 34,646 analysis files.