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Abstract: Construction workers experience a high rate of fatal incidents from mobile equipment 

in the industry. One of the major causes is the decline in the acoustic condition of workers due to 

the constant exposure to construction noise. Previous studies have proposed various ways in which 

audio sensing and machine learning techniques can be used to track equipment's movement on the 

construction site but not on the audibility of safety signals. This study develops a novel framework 

to help automate safety surveillance in the construction site. This is done by detecting the audio 

sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of 

imminent dangers of mobile equipment. The scope of this study is focused on developing a signal 

processing model to help improve the audible sense of mobile equipment for workers. This study 

includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-

based machine learning model for automated detection of collision hazards to be integrated into 

intelligent hearing protection devices, and (c) conduct field experiments to investigate the system’ 

efficiency and latency. The outcomes showed that the proposed model detects equipment correctly 

and can timely notify the workers of hazardous situations. 

 

Keywords: Construction Heavy Equipment, Convolutional Neural Networks, Autonomous Sound 

Surveillance, Construction Safety. 

1. INTRODUCTION 

According to the Occupational Safety and Health Administration (OSHA), the annual fatality 

rate in the construction industry in the United States is relatively high compared to that in other 

industrial sectors [1]. Struck-by equipment or vehicles is one leading cause of construction-related 

deaths after fall [2], mainly due to the proximity between construction workers and heavy mobile 

equipment [3]. The critical factor leading to collisions was reported as the decline in auditory 

situational awareness of construction workers due to the hearing loss [4] and the complicated nature 

of construction noises [5]. Therefore, a novel audio-based technique that can augment the audible 

sense of workers is crucial to improving safety performance.  

Advanced computational techniques in auditory signal processing for hazard detection are 

motivated by strong acoustic emissions from hazardous situations. It is possible to extract much 

useful information from sounds at job sites. Mobile construction equipment often produces unique 

sound patterns while performing certain activities [6], [7]. However, acoustic events are typically 
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complicated by heterogeneous sound types generated from diverse construction equipment 

operations, including static equipment and hand tools [8], [9]. Therefore, it is useful to distinguish 

between acoustic events of mobile equipment associated with collision hazards and acoustic events 

of stationary equipment. The auditory surveillance of potential struck-by vehicle accidents caused 

by mobile equipment would significantly improve construction safety. However, sound sensing for 

safety in the construction field has received little attention from the academic community. A 

majority number of related studies were focused on tracking various construction equipment 

activities to reduce operating costs and identifying working and operation activities [6], [7], [10], 

[11]. No studies have been conducted to help workers recognize important signals buried in 

background noises. To address the gap, this study aimed to determine whether the proposed 

technology improves construction workers’ safety by augmenting their ability to hear important 

sounds related to mobile equipment in a noisy environment. This was done by identifying and 

characterizing distinctive features of acoustic safety cues associated with equipment-related 

hazards that require quick and effective responses from construction workers. The studies also 

developed a proof-of-concept prototype of a sound detection device that can recognize and timely 

provide the end-user with reliable warnings of potential moving equipment. 

2. METHODOLOGY 

The overall process includes three main steps: (1) collected and labeled acoustic signals as 

abnormal and normal types which were mixed at different signal-to-noise ratios for testing 

purposes, (2) extracted acoustic features using the Fast Fourier Transform (FFT) function, and (3) 

trained a CNN model using the labeled data to detect acoustic events. 

2.1. Dataset preparation 

The data preparation stage defines the set of events the system should recognize for the scope of 

the study, and the audio files of the dataset prepared for this research include two sources: 1) 

audiotapes extracted from videos downloaded from publicly available audio repositories and 2) 

sound recorded from construction sites of our industry partners.  

 

Table 1. Number of original examples in each subset of data 
Abnormal group 

(Mobile equipment) 

Normal group 

(Stationary equipment) 

Type Total duration (s) Number of 

audio files. 

Type Total 

duration (s) 

Number of 

audio files. 

Bulldozer 60 20 Concrete pumper 60 20 

Compactor roller 60 20 Hammer 60 20 

Crane 60 20 Pile driver 60 20 

Excavator  60 20 Pneumatic breaker 60 20 

Forklift 60 20 Pneumatic tamper 60 20 

Front end loader  60 20 Saw 60 20 

Grader 60 20 Steel welding 60 20 

Scraper  60 20    

Water truck 60 20    

Total 540 180  420 140 
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The recordings were made so that each includes only one single sound source (no overlap with 

other background signals) with high quality and converted into WAV format at 16 kHz sampling 

rate, 16-bit depth, and mono channel. The authors manually annotated the collected data with the 

following labels: normal and abnormal. The normal label refers to sounds of stationary equipment 

that are not associated with collision hazards while the abnormal category is sounds generated from 

mobile equipment. The non-overlap dataset is summarized in Table 1. 

To generate audio examples that include concurrent sounds for testing purposes, the abnormal 

signals were mixed with the normal sounds at different signal-to-noise (SNR). SRN is a ratio 

representing how large the signal level is compared to the noise level, and the unit is in dB (decibel). 

A signal is an abnormal sound that needs to be detected, while noise refers to unimportant sounds 

of stationary equipment.  The higher the SNR is, the higher the signal's amplitude is relative to that 

of the noise. The SNR can be calculated by the following formula: 

𝑆𝑁𝑅𝑑𝐵 = 20𝑙𝑜𝑔10
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
                (1) 

This sound mixing process generates a new dataset of 44,800 audio files. Each of these is a 

mixture of two distinguished equipment types: mobile equipment mixed with stationary equipment 

or stationary equipment mixed with stationary equipment. The new audio files that include one 

sound from the mobile equipment group are considered abnormal, such as an excavator mixed with 

a hammer. The audio files do not consist of any sound from mobile equipment considered normal. 

The mixtures were created at different SNRs (-10dB, -5dB, 0dB, 5dB and 10dB) which was used 

for testing. 

2.2 Feature extraction 

After proper labeling and mixing of the dataset, the audios were then used to engineer the feature 

extraction stage by extracting Mel-Frequency Cepstral Coefficients (MFCCs), the most commonly 

used acoustic feature, to represent an acoustic signal for use in training [12], [13]. The extraction 

of MFCC includes the following three steps (1) framing and windowing, (2) Fast Fourier Transform 

calculation, and (3) Mel-Filter Bank and Discrete cosine Transform (DCT).   

2.3 Model development 

In this section, the authors provide the detailed method of audio signal processing, including the 

CNN model for abnormal and normal sounds classification using MFCC features that well 

represent the audio signals. The process of developing the model for detecting audio signals is 

discussed in the following subsections. 

2.4 CNN model  

After the feature extraction is completed, the CNN model is developed for sound detection with 

the array of the MFCC values as the input. The size of MFCC values is M x N, where M is the 

number of frames and N is the number of MFCCs. The deep CNN architecture employed in this 

study comprises four convolutional layers, followed by a max-pooling layer, a dropout layer, a 

flatten layer, and two fully functional layers connected layers to get the output. The output is a 

prediction of the class (normal and abnormal) to which audio belongs. We trained the CNN model 

with 80% of the samples used for training, and the remaining 20% were used for testing. The 

training procedure was stopped after 20 epochs.  In the baseline model, the authors initially 

considered 20 MFCCs, 20 filters in the filter bank, and a window size of 500ms. Then, CNN models 

were trained with some modification of parameters. Finally, the best value of the number of 
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MFCCs, number of filters, and window size is applied to run the CNN model. Then, each model is 

tested on 5 test sets with 5 different SNR value (-10dB, -5dB, 0dB, 5dB, and 10dB). 

3. RESULTS AND DISCUSSION 

3.1. Computational performance 

     The performance of each model tested on each of five test sets is summarized in Table 2. This 

is a binary problem as the model develop is classifying the sound into mobile and stationary 

equipment type. Overall, the results show that the performance scores of most models increase 

when there is less background noise in the audio files. When being tested on the dataset without 

overlapping sounds, the model achieves an accuracy of 87.98%. This figure drops to 85.17% when 

background noise sounds are added to the clean signals at 10db SRN. The model’s performance 

becomes relatively poor as noises are significantly louder than important signals. The accuracy of 

the models on the -10db SNR and -5db SNR are 50.63% and 56.85%, respectively. 

                Table 2. Comparison of model performance (frame size = 0.1s) 

 Performance achieved on each test set 

Metrics -10dB -5dB 0dB 5dB 10dB No 

mixture 

Accuracy 0.5063 0.5685 0.6760 0.7785 0.8517 0.8798 

Precision 0.5844 0.6466 0.7218 0.7911 0.8498 0.8779 

Recall 0.5492 0.6069 0.6979 0.7920 0.8551 0.8858 

F1-score 0.4697 0.5508 0.6716 0.7785 0.8507 0.8789 

 

 

 

 

 

 

 

 

 

3.2. Field tests and experimental setup 

     To validate the applicability of the developed model in real construction sites, we build a mobile 

application on android devices using a tensor flow lite (a lightweight version of tensor for running 

machine learning models). This mobile application provides users with alerts of the occurrence of 

mobile equipment along with the probability that the detection is correct. The probability is the 

likelihood the equipment is detected, and a value close to 0 indicates the unlikelihood of that 

equipment type present, and a value closer to or 1 indicates certainty. Two separate experiments 

were conducted to evaluate the efficacy of the android application in detecting the occurrence of 

Figure 1. Sound classification android application 
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mobile equipment. The first experiment was conducted by testing it in the laboratory setting, while 

the second was done on the field. The input test signals include the sound of 16 and 4 types of 

equipment respectively for the two experiments.  We performed three trials for each test signal. For 

each experiment set, the following outputs were recorded: type of equipment detected, the 

probability that the detection is correct, and the time it took to detect the signal. The loudness of 

the sound while experimenting ranges between 72 and 80db measured using a Decibel Meter iOS 

application. In this experiment, a sound source (among 16 types of sound) generated from a 

computer speaker is placed 4 meters away from the mobile device. In the field experiments, a site 

engineer was asked to carry the mobile device with the mobile application installed and stand at 

10m and 20m away from the equipment. He recorded the average time and probability of hazard 

detection for three samples of each of the four equipment. The variation in distance is to check the 

impact of distance on the model because a closer device to a worker signifies more danger. Fig 3 

shows the setup for testing the model on the construction site. 

 

 

Figure 2. Experiment Setup in Controlled Environment (the loudness detector in the left, the 

computer, and the mobile device on the right) 

 

Figure 3. Sound detection experiments with a front-end loader (left) and an excavator (right) 

 

3.3. Testing results 

     Table 3 below shows the result of the experiments conducted in the controlled environment. 

The acoustic sensing application developed was used to monitor equipment classification and 

measure the time required to detect the important signal. The result shows that it took less than 10 

seconds for the application to generate an alert. Yet, it is difficult to confirm whether this latency 

is sufficient for real-time hazard detection as it highly depends on many job-site factors such as the 
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speed and the direction of a target mobile vehicle as well as the presence of barriers between the 

worker and the equipment. It is ideal to reduce the delay to allow the worker to have more time for 

responsive safety actions. This seems to be challenging for complex workplaces with excessive 

background noise. Because of that nature, our model requires significant computational power for 

processing a large amount of real-life data. Future work is needed that implements advanced pre-

processing algorithms (i.e., de-noising) with less computational requirements to improve the 

overall performance of the proposed system, particularly reducing the detection duration. 

Table 3. Results from the experiments in the laboratory 
 

Equipment Type Probability Duration (sec) 

Excavator 0.656 4.000 

Bulldozer 0.768 5.667 

Grader 0.826 5.222 

Front end loader 0.627 7.333 

Forklift 0.903 5.222 

Compactor roller 0.882 5.111 

Scraper 0.681 5.444 

Water truck 0.672 8.278 

Pneumatic tamper 0.413 7.667 

Concrete pumper 0.532 9.667 

Pile driver 0.601 3.111 

Pneumatic breaker 0.486 7.778 

Steel welding 0.604 9.000 

Hammer 0.783 5.111 

Saw 0.454 7.889 

 

Table 4. Average Result from Site Investigation 
 

Equipment Type Probability Duration (sec) 

Distance 10m 20m 10m 20m 

Excavator 0.27 0.39 7.67 11.33 

Frontend loader 0.92 0.53 3.33 14.00 

Hammer 0.94 0.93 7.67 10.00 

Saw 0.51 0.66 9.00 10.67 

 

     The results from the construction site experiments (see Table 4) generally show better 

performance when the worker is closer to the equipment in terms of probability and time to the first 

alert. The probability range among the equipment is 27%-94% and 39%-93%, respectively, when 

the worker is 10m and 20m further away from the test equipment. It is noted that the acoustic 

sensing in the field experiments was affected by surrounding equipment noise and human activities 

on the construction site. This could be the main cause of low probability for some types of 

equipment, such as the excavator (27% at 10m) and the saw (51% at 10m). Regarding the latency, 

the longest duration was 14 seconds when the device detected the sound of the frontend loader, 

which is still relatively short. Compared with the first set of experiments in the controlled 

environment, the performance in the field tests is significantly reduced. The controlled environment 
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is free of exterior noise; therefore, this allows easy picking up sound features faster and higher 

confidence results. 

3.4. Discussions 

      This study developed an AI model using CNN-based signal processing to enable the early 

detection of auditory signals related to potential collision hazards. We trained and tested various 

models with different signal-to-noise ratios. To reduce the number of false negatives (missing any 

mobile equipment that will likely cause harm to field workers), the recall evaluation metric, which 

measures how many observations our model correctly predicted over the total number of 

observations, was emphasized. Based on the findings (see Table 2), the probability of missing out 

on a potential hazard is not a major concern of the developed model. Also, the precision value, 

which indicates the mislabeling of normal background sound as a danger, is in an acceptable range. 

The processing capacity of smartphones obviously plays a great role in determining how fast it 

detects, and the quality of its built-in microphone is critical to the input sound captured.  Moreover, 

the level of background noise greatly affects the efficacy of the device. The results of the 

implementation experiments indicated that the probability of true positives for the controlled 

experiment is much greater than those of field tests. It is because the test sounds in the field tests 

were greatly buried in background noises (e.g., nearby operations). Although this study proves 

that the proposed CNN model is a reliable technique to help detect potential collision hazards at 

the construction site, there are still areas to be improved for successful practical implementation. 

One limitation of this research is that the system could not capture the location of mobile 

equipment, and sound localization would help workers be aware of their position relative to the 

direction and distance to the hazard. Thus, localization is important to reduce false alarms for the 

system. Lastly, the notification zone for danger will be based on estimated figure for each type of 

equipment. 

4. CONCLUSION 

     Collision hazards have posed serious threats to the safety of workers on site. The presented 

framework provides detection of this dangerous situation using CNN to classify normal and 

abnormal audio files mixed at different SNR. The performance indicates that the model yields 

reliable predictions with an accuracy of 88% in detecting abnormal sounds relating to collision 

hazards when the signals are not buried in background noises. The experiment monitors the time, 

probability, and type of equipment. We observed faster detection for some equipment when used, 

especially if it exhibits a unique sound characteristic and lower noise level. Delay in detecting some 

equipment is related to the device's latency due to limited computational power. TensorFlow-lite 

model is also cross-platform and can work on IoT devices, advantageous for future research in this 

or related field. This paper is expected to start a long series of research on acoustic monitoring of 

construction equipment and provide initial guidance for future research.  
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