• Title/Summary/Keyword: Neural Vector Quantization

Search Result 85, Processing Time 0.027 seconds

Cardio-Angiographic Sequence Coding Using Neural Network Adaptive Vector Quantization (신격회로망 적응 VQ를 이용한 심장 조영상 부호화)

  • 주창희;최종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.374-381
    • /
    • 1991
  • As a diagnostic image of hospitl, the utilization of digital image is steadily increasing. Image coding is indispensable for storing and compressing an enormous amount of diagnostic images economically and effectively. In this paper adaptive two stage vector quantization based on Kohonen's neural network for the compression of cardioangiography among typical angiography of radiographic image sequences is presented and the performance of the coding scheme is compare and gone over. In an attempt to exploit the known characteristics of changes in cardioangiography, relatively large blocks of image are quantized in the first stage and in the next stage the bloks subdivided by the threshold of quantization error are vector quantized employing the neural network of frequency sensitive competitive learning. The scheme is employed because the change produced in cardioangiography is due to such two types of motion as a heart itself and body motion, and a contrast dye material injected. Computer simulation shows that the good reproduction of images can be obtained at a bit rate of 0.78 bits/pixel.

  • PDF

Low Sit Rate Image Coding using Neural Network (신경망을 이용한 저비트율 영상코딩)

  • 정연길;최승규;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.579-582
    • /
    • 2001
  • Vector Transformation is a new method unified vector quantization and coding. So far, codebook generation applied to coding was LBG algorithm. But using the advantage of SOFM(Self-Organizing Feature Map) based on neural network can improve a system's performance. In this paper, we generated VTC(Vector Transformation Coding) codebook applied with SOFM algorithm and compare the result for several coding rates with LBG algorithm. The problem of Vector quantization is complicated calculation and codebook generation. So, to solve this problem, we used neural network approach method.

  • PDF

Verification and estimation of a posterior probability and probability density function using vector quantization and neural network (신경회로망과 벡터양자화에 의한 사후확률과 확률 밀도함수 추정 및 검증)

  • 고희석;김현덕;이광석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.325-328
    • /
    • 1996
  • In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%.

  • PDF

Forward Viterbi Decoder applied LVQ Network (LVQ Network를 적용한 순방향 비터비 복호기)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1333-1339
    • /
    • 2004
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and states the effective reduction of PM(Path Metric) and BM(Branch Metric) memories and arithmetic comparative calculations with appling PVSL(Prototype Vector Selecting Logic) and LVQ(Learning Vector Quantization) in neural network to simplify systems and to decode forwardly. Regardless of extension of constraint length, this paper presents the new Vierbi decoder and the appied algorithm because new structure and algorithm can apply to the existing Viterbi decoder using only uncomplicated application and verifies the rationality of the proposed Viterbi decoder through VHDL simulation and compares the performance between the proposed Viterbi decoder and the existing.

A Self Creating and Organizing Neural Network (자기 분열 및 구조화 신경회로망)

  • 최두일;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.533-540
    • /
    • 1992
  • The Self Creating and Organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

Realization of Forward Real-time Decoder using Sliding-Window with decoding length of 6 (복호길이 6인 Sliding-Window를 적용한 순방향 실시간 복호기 구현)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.185-190
    • /
    • 2005
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and realizes forward real-time decoder using Sliding-Window with decoding length 6 and PVSL(Prototype Vector Selecting Logic), LVQ(Learning Vector Quantization) in Neural Network. In comparison condition to theoretically constrained AWGN channel environment at $S/(N_{0}/2)=1$ I verified the superiority of forward real-time decoder through hard-decision and soft-decision comparison between Viterbi decoder and forward real-time decoder such as BER and Secure Communication and H/W Structure.

Vector quantization codebook design using activity and neural network (활동도와 신경망을 이용한 벡터양자화 코드북 설계)

  • 이경환;이법기;최정현;김덕규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.75-82
    • /
    • 1998
  • Conventional vector quantization (VQ) codebook design methods have several drawbacks such as edge degradation and high computational complexity. In this paper, we first made activity coordinates from the horizonatal and the vertical activity of the input block. Then it is mapped on the 2-dimensional interconnected codebook, and the codebook is designed using kohonen self-organizing map (KSFM) learning algorithm after the search of a codevector that has the minumum distance from the input vector in a small window, centered by the mapped point. As the serch area is restricted within the window, the computational amount is reduced compared with usual VQ. From the resutls of computer simulation, proposed method shows a better perfomance, in the view point of edge reconstruction and PSNR, than previous codebook training methods. And we also obtained a higher PSNR than that of classified vector quantization (CVQ).

  • PDF

A Codebook Design for Vector Quantization Using a Neural Network (신경망을 이용한 벡터 양자화의 코드북 설계)

  • 주상현;원치선;신재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.276-283
    • /
    • 1994
  • Using a neural network for vector quantization, we can expect to have better codebook design algorithm for its adaptive process. Also, the designed codebook puts the codewords in order by its self-organizing characteristics, which makes it possible to partially search the codebook for real time process. To exploit these features of the neural network, in this paper, we propose a new codebook design algorithm that modified the KSFM(Kohonen`s Self-organizing Feature Map) and then combines the K-means algorithm. Experimental results show the performance improvment and the ability of the partical seach of the codebook for the real time process.

  • PDF

Intelligent Switching Control of Pneumatic Cylinders by Learning Vector Quantization Neural Network

  • Ahn KyoungKwan;Lee ByungRyong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2005
  • The development of a fast, accurate, and inexpensive position-controlled pneumatic actuator that may be applied to various practical positioning applications with various external loads is described in this paper. A novel modified pulse-width modulation (MPWM) valve pulsing algorithm allows on/off solenoid valves to be used in place of costly servo valves. A comparison between the system response of the standard PWM technique and that of the modified PWM technique shows that the performance of the proposed technique was significantly increased. A state-feedback controller with position, velocity and acceleration feedback was successfully implemented as a continuous controller. A switching algorithm for control parameters using a learning vector quantization neural network (LVQNN) has newly proposed, which classifies the external load of the pneumatic actuator. The effectiveness of this proposed control algorithm with smooth switching control has been demonstrated through experiments with various external loads.