• Title/Summary/Keyword: Neural Predictor

Search Result 100, Processing Time 0.027 seconds

Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System

  • Canbulut, Fazil;Sinanoglu, Cem;Yildirim, Sahin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.432-442
    • /
    • 2004
  • This paper presents a neural network predictor for analysing rigidity variations of hydrostatic bearing system. The designed neural network has feedforward structure with three layers. The layers are input layer, hidden layer and output layer. Two main parameter could be considered for hydrostatic bearing system. These parameters are the size of bearing pocket and the orifice dimension. Due to importancy of these parameters, it is necessary to analyse with a suitable optimisation method such as neural network. As depicted from the results, the proposed neural predictor exactly follows experimental desired results.

The Multiple Branch Predictor Using Perceptrons (퍼셉트론을 이용한 다중 분기 예측법)

  • Lee, Jong-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.621-626
    • /
    • 2009
  • This paper presents a multiple branch predictor using perceptrons. The key idea is to apply neural networks to the multiple branch predictor. We describe our design and evaluate it with the SPEC 2000 integer benchmarks. Our predictor achieves increased accuracy than the Bi-Mode and the YAGS multiple branch predictor with the same hardware cost.

The Single Step Prediction of Multi-Input Multi-Output System using Chaotic Neural Networks (카오틱 신경망을 이용한 다입력 다출력 시스템의 단일 예측)

  • 장창화;김상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1041-1044
    • /
    • 1999
  • In This paper, we investigated the single step prediction for output responses of chaotic system with multi Input multi output using chaotic neural networks. Since the systems with chaotic characteristics are coupled between internal parameters, the chaotic neural networks is very suitable for output response prediction of chaotic system. To evaluate the performance of the proposed neural network predictor, we adopt for Lorenz attractor with chaotic responses and compare the results with recurrent neural networks. The results demonstrated superior performance on convergence and computation time than the predictor using recurrent neural networks. And we could also see good predictive capability of chaotic neural network predictor.

  • PDF

Design of a Time-delay Compensator Using Neural Network In a Tele-operation System (원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계)

  • Choi, Ho-Jin;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Construction of the Intelligence Stress Predictor for Compression Strength Evaluation (압축강도 평가를 위한 지능형 응력예측기 구축)

  • 박원규;우영환;이종구;윤인식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

Long-term Prediction of Speech Signal Using a Neural Network (신경 회로망을 이용한 음성 신호의 장구간 예측)

  • 이기승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.522-530
    • /
    • 2002
  • This paper introduces a neural network (NN) -based nonlinear predictor for the LP (Linear Prediction) residual. To evaluate the effectiveness of the NN-based nonlinear predictor for LP-residual, we first compared the average prediction gain of the linear long-term predictor with that of the NN-based nonlinear long-term predictor. Then, the effects on the quantization noise of the nonlinear prediction residuals were investigated for the NN-based nonlinear predictor A new NN predictor takes into consideration not only prediction error but also quantization effects. To increase robustness against the quantization noise of the nonlinear prediction residual, a constrained back propagation learning algorithm, which satisfies a Kuhn-Tucker inequality condition is proposed. Experimental results indicate that the prediction gain of the proposed NN predictor was not seriously decreased even when the constrained optimization algorithm was employed.

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

SOHO Bankruptcy Prediction Using Modified Bagging Predictors (Modified Bagging Predictors를 이용한 SOHO 부도 예측)

  • Kim, Seung-Hyuk;Kim, Jong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.15-26
    • /
    • 2007
  • In this study, a SOHO (Small Office Home Office) bankruptcy prediction model is proposed using Modified Bagging Predictors which is modification of traditional Bagging Predictors. There have been several studies on bankruptcy prediction for large and middle size companies. However, little studies have been done for SOHOs. In commercial banks, loan approval processes for SOHOs are usually less structured than those for large and middle size companies, and largely depend on partial information such as credit scores. In this study, we use a real SOHO loan approval data set of a Korean bank. First, decision tree induction techniques and artificial neural networks are applied to the data set, and the results are not satisfactory. Bagging Predictors which has been not previously applied for bankruptcy prediction and Modified Bagging Predictors which is proposed in this paper are applied to the data set. The experimental results show that Modified Bagging Predictors provides better performance than decision tree inductions techniques, artificial neural networks, and Bagging Predictors.

  • PDF