• 제목/요약/키워드: Neural Pathways

검색결과 67건 처리시간 0.023초

기관지천식에서의 신경적 기전 (Neural Mechanism in Bronchial Asthma)

  • 최병휘
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권2호
    • /
    • pp.73-86
    • /
    • 1994
  • In addition to classic cholinergic and adrenergic pathways, the existence of a third division of autonomic control in the human airways has been proved. It is called a nonadrenergic noncholinergic(NANC) nervous system, and difficult to study in the absence of specific blockers. Neuropeptides are certainly suggested to be transmitters of this NANC nervous system. It is very frustrating to understand the pathophysiologic role of these peptides in the absence of any specific antagonists. However, further studies of neuropeptides might eventually lead to novel forms of treatment for bronchial asthma. Another study of the interaction between different components of the autonomic nervous system, either in ganglionic neurotransmission or by presynaptic modulation of neurotransmitters at the end-organ will elute neural control in airway disease, particularly in asthma. Studies of how autonomic control may be disordered in airway disease should lead to improvements in clinical management. Epithelial damage due to airway inflammation in asthma may induce bronchial hyperresponsiveness. Axon reflex mechanism is one of possible mechanisms in bronchial hyperresponsiveness. Epithelial damage may expose sensory nerve terminals and C-fiber nrve endings are stimulated by inflammatory mediators. Bi-directional communication between the nerves and mast cells may have important roles in allergic process. The psychological factors and conditioning of allergic reactions is suggested that mast cell activation might be partly regulated by the central nervous system via the peripheral nerves. Studies in animal models, in huamn airways in vitro and in patients with airway disease will uncover the interaction between allergic disease processes and psychologic factors or neural mechainsms.

  • PDF

기분장애 뇌신경기저에 대한 이해 : 뇌영상 연구를 중심으로 (Understanding of Neural Mechanism of Mood Disorders : Focused on Neuroimaging Findings)

  • 김유라;이경욱
    • 생물정신의학
    • /
    • 제18권1호
    • /
    • pp.15-24
    • /
    • 2011
  • Mood disorder is unlikely to be a disease of a single brain region or a neurotransmitter system. Rather, it is now generally viewed as a multidimensional disorder that affects many neural pathways. Growing neuroimaging evidence suggests the anterior cingulate-pallidostriatal-thalamic-amygdala circuit as a putative cortico-limbic mood regulating circuit that may be dysfunctional in mood disorders. Brain-imaging techniques have shown increased activation of mood-generating limbic areas and decreased activation of cortical areas in major depressive disorder(MDD). Furthermore, the combination of functional abnormalities in limbic subcortical neural regions implicated in emotion processing together with functional abnormalities of prefrontal cortical neural regions probably result in the emotional lability and impaired ability to regulate emotion in bipolar disorder. Here we review the biological correlates of MDD and bipolar disorder as evidenced by neuroimaging paradigms, and interpret these data from the perspective of endophenotype. Despite possible limitations, we believe that the integration of neuroimaging research findings will significantly advance our understanding of affective neuroscience and provide novel insights into mood disorders.

Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids

  • Ju-Hyun Lee;Mohammed R. Shaker;Si-Hyung Park;Woong Sun
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.385-393
    • /
    • 2023
  • In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System

  • Kim, Seunghee;Lee, Minjae;Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.45-57
    • /
    • 2020
  • In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.

경두개 전침과 발효황금 병행 투여가 흰쥐의 허혈성 뇌세포 손상에 미치는 효과 (Combination of Transcranial Electro-Acupuncture and Fermented Scutellaria baicalensis Ameliorates Motor Recovery and Cortical Neural Excitability Following Focal Stroke in Rats)

  • 김민선;구호;최명애;문세진;양승범;김재효
    • Korean Journal of Acupuncture
    • /
    • 제35권4호
    • /
    • pp.187-202
    • /
    • 2018
  • Objectives : Non-invasive transcranial electrical stimulation is one of therapeutic interventions to change in neural excitability of the cortex. Transcranial electro-acupuncture (TEA) can modulate brain functions through changes in cortical excitability as a model of non-invasive transcranial electrical stimulation. Some composites of fermented Scutellaria baicalenis (FSB) can activate intercellular signaling pathways for activation of brain-derived neurotrophic factor that is critical for formation of neural plasticity in stroke patients. This study was aimed at evaluation of combinatory treatment of TEA and FSB on behavior recovery and cortical neural excitability in rodent focal stroke model. Methods : Focal ischemic stroke was induced by photothrombotic injury to the motor cortex of adult rats. Application of TEA with 20 Hz and $200{\mu}A$ in combination with daily oral treatment of FBS was given to stroke animals for 3 weeks. Motor recovery was evaluated by rotating bean test and ladder working test. Electrical activity of cortical pyramidal neurons of stroke model was evaluated by using multi-channel extracellular recording technique and thallium autometallography. Results : Compared with control stroke group who did not receive any treatment, Combination of TEA and FSB treatment resulted in more rapid recovery of forelimb movement following focal stroke. This combination treatment also elicited increase in spontaneous firing rate of putative pyramidal neurons. Furthermore expression of metabolic marker for neural excitability was upregulated in peri-infract area under thallium autometallography. Conclusions : These results suggest that combination treatment of TEA and FSB can be a possible remedy for motor recovery in focal stroke.

The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus

  • Kim, Gyeongwha;Jung, Soonwoong;Son, Hyeonwi;Kim, Sujeong;Choi, Jungil;Lee, Dong Hoon;Roh, Gu Seob;Kang, Sang Soo;Cho, Gyeong Jae;Choi, Wan Sung;Kim, Hyun Joon
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.324-329
    • /
    • 2014
  • Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor ($GABA_BR$) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and $GABA_BR$. Therefore, in the present study, we tested whether RGS4 associates with $GABA_BR$ in these brain regions. We found the co-localization of RGS4 and $GABA_BR$ subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between $GABA_{B2}R$ and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to $GABA_{B2}R$ and the number of double-positive cells. These results indicate that $GABA_BR$ forms a signal complex with RGS4 and suggests that RGS4 is a regulator of $GABA_BR$.

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Astaxanthin Inhibits $H_2O_2$-Mediated Apoptotic Cell Death in Mouse Neural Progenitor Cells via Modulation of P38 and MEK Signaling Pathways

  • Kim, Jeong-Hwan;Choi, Woo-Bong;Lee, Jong-Hwan;Jeon, Sung-Jong;Choi, Yung-Hyun;Kim, Byung-Woo;Chang, Hyo-Ihl;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1355-1363
    • /
    • 2009
  • In the present study, the neuroprotective effects of astaxanthin on $H_2O_2$-mediated apoptotic cell death, using cultured mouse neural progenitor cells (mNPCs), were investigated. To cause apoptotic cell death, mNPCs were pretreated with astaxanthin for 8 h and followed by treatment of 0.3 mM $H_2O_2$. Pretreatment of mNPCs with astaxanthin significantly inhibited $H_2O_2$-mediated apoptosis and induced cell growth in a dose-dependent manner. In Western blot analysis, astaxanthin-pretreated cells showed the activation of p-Akt, p-MEK, p-ERK, and Bcl-2, and the reduction of p-P38, p-SAPK/JNK, Bax, p-GSK3b, cytochrome c, caspase-3, and PARP. Because $H_2O_2$ triggers caspases activation, this study examined whether astaxanthin can inhibit caspases activation in $H_2O_2$-treated mNPCs. After $H_2O_2$ treatment, caspases activities were prominently increased, but astaxanthin pretreatment significantly inhibited $H_2O_2$-mediated caspases activation. Astaxanthin pretreatment also significantly recovered the ATP production ability of $H_2O_2$-treated cells. These findings indicate that astaxanthin inhibits $H_2O_2$-mediated apoptotic features in mNPCs. Inhibition assays with SB203580 ($10\;{\mu}M$, a specific inhibitor of p38) and PD98059 ($10\;{\mu}M$, a specific inhibitor of MEK) clearly showed that astaxanthin can inhibit $H_2O_2$-mediated apoptotic death via modulation of p38 and MEK signaling pathways.

열충격 단백질의 신경정신의학적 의의와 중요성 (Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry)

  • 오동훈;양병환;최준호
    • 생물정신의학
    • /
    • 제14권4호
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF