Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.119

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System  

Kim, Seunghee (Department of Bioscience and Biotechnology, Konkuk University)
Lee, Minjae (Department of Bioscience and Biotechnology, Konkuk University)
Choi, Yoon Kyung (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 45-57 More about this Journal
Abstract
In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.
Keywords
Hypoxia-inducible factor; Notch signaling; Oxygen; Central nervous system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo, L. and O'Leary, D. D. (2005) Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127-156.   DOI
2 Logeat, F., Bessia, C., Brou, C., LeBail, O., Jarriault, S., Seidah, N. G. and Israel, A. (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. U.S.A. 95, 8108-8112.   DOI
3 Lopez-Juarez, A., Titus, H. E., Silbak, S. H., Pressler, J. W., Rizvi, T. A., Bogard, M., Bennett, M. R., Ciraolo, G., Williams, M. T., Vorhees, C. V. and Ratner, N. (2017) Oligodendrocyte Nf1 controls aberrant notch activation and regulates myelin structure and behavior. Cell Rep. 19, 545-557.   DOI
4 Louvi, A. and Artavanis-Tsakonas, S. (2006) Notch signalling in vertebrate neural development. Nature reviews. Neuroscience 7, 93-102.
5 Lucking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B. S., Meco, G., Denefle, P., Wood, N. W., Agid, Y. and Brice, A.; French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease (2000) Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med. 342, 1560-1567.   DOI
6 Soucek, T., Cumming, R., Dargusch, R., Maher, P. and Schubert, D. (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39, 43-56.   DOI
7 Lo, E. H. and Rosenberg, G. A. (2009) The neurovascular unit in health and disease: Introduction. Stroke 40, S2-S3.   DOI
8 Lobov, I. B., Renard, R. A., Papadopoulos, N., Gale, N. W., Thurston, G., Yancopoulos, G. D. and Wiegand, S. J. (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. U.S.A. 104, 3219-3224.   DOI
9 Liu, Z. J., Shirakawa, T., Li, Y., Soma, A., Oka, M., Dotto, G. P., Fairman, R. M., Velazquez, O. C. and Herlyn, M. (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell. Biol. 23, 14-25.   DOI
10 Snowdon, D. A., Greiner, L. H., Mortimer, J. A., Riley, K. P., Greiner, P. A. and Markesbery, W. R. (1997) Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813-817.   DOI
11 Man, J., Yu, X., Huang, H., Zhou, W., Xiang, C., Huang, H., Miele, L., Liu, Z., Bebek, G., Bao, S. and Yu, J. S. (2018) Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22, 104-118.E6.   DOI
12 Lutolf, S., Radtke, F., Aguet, M., Suter, U. and Taylor, V. (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129, 373-385.   DOI
13 Majmundar, A. J., Wong, W. J. and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309.   DOI
14 Maki, T., Maeda, M., Uemura, M., Lo, E. K., Terasaki, Y., Liang, A. C., Shindo, A., Choi, Y. K., Taguchi, A., Matsuyama, T., Takahashi, R., Ihara, M. and Arai, K. (2015) Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neurosci. Lett. 597, 164-169.   DOI
15 Mason, H. A., Rakowiecki, S. M., Gridley, T. and Fishell, G. (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev. Neurosci. 28, 49-57.   DOI
16 Ashok, B. S., Ajith, T. A. and Sivanesan, S. (2017) Hypoxia-inducible factors as neuroprotective agent in Alzheimer's disease. Clin. Exp. Pharmacol. Physiol. 44, 327-334.   DOI
17 Ables, J. L., Breunig, J. J., Eisch, A. J. and Rakic, P. (2011) Not(ch) just development: Notch signalling in the adult brain. Nat. Rev. Neurosci. 12, 269-283.   DOI
18 Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C. and Farinas, I. (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat. Neurosci. 12, 1514-1523.   DOI
19 Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., Rueger, M. A., Bae, S. K., Kittappa, R. and McKay, R. D. (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823-826.   DOI
20 Mazumdar, J., O'Brien, W. T., Johnson, R. S., LaManna, J. C., Chavez, J. C., Klein, P. S. and Simon, M. C. (2010) $O_2$ regulates stem cells through Wnt/beta-catenin signalling. Nat. Cell Biol. 12, 1007-1013.   DOI
21 Minamishima, Y. A., Moslehi, J., Bardeesy, N., Cullen, D., Bronson, R. T. and Kaelin, W. G., Jr. (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236-3244.   DOI
22 Mottet, D., Dumont, V., Deccache, Y., Demazy, C., Ninane, N., Raes, M. and Michiels, C. (2003) Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J. Biol. Chem. 278, 31277-31285.   DOI
23 Swiatek, P. J., Lindsell, C. E., del Amo, F. F., Weinmaster, G. and Gridley, T. (1994) Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707-719.   DOI
24 Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A. and Eichmann, A. (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl. Acad. Sci. U.S.A. 104, 3225-3230.   DOI
25 Sun, X., He, G., Qing, H., Zhou, W., Dobie, F., Cai, F., Staufenbiel, M., Huang, L. E. and Song, W. (2006) Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. U.S.A. 103, 18727-18732.   DOI
26 Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A. and Greenberg, D. A. (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843-1851.   DOI
27 Pistollato, F., Rampazzo, E., Persano, L., Abbadi, S., Frasson, C., Denaro, L., D’Avella, D., Panchision, D. M., Della Puppa, A., Scienza, R. and Basso, G. (2010) Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28, 1918-1929.   DOI
28 Muoio, V., Persson, P. B. and Sendeski, M. M. (2014) The neurovascular unit-concept review. Acta Physiol. (Oxf.) 210, 790-798.   DOI
29 Ogunshola, O. O. and Antoniou, X. (2009) Contribution of hypoxia to Alzheimer's disease: Is HIF-1alpha a mediator of neurodegeneration? Cell. Mol. Life Sci. 66, 3555-3563.   DOI
30 Phng, L. K. and Gerhardt, H. (2009) Angiogenesis: A team effort coordinated by notch. Dev. Cell 16, 196-208.   DOI
31 Roitbak, T., Surviladze, Z. and Cunningham, L. A. (2011) Continuous expression of HIF-1alpha in neural stem/progenitor cells. Cell. Mol. Neurobiol. 31, 119-133.   DOI
32 Pitulescu, M. E., Schmidt, I., Giaimo, B. D., Antoine, T., Berkenfeld, F., Ferrante, F., Park, H., Ehling, M., Biljes, D., Rocha, S. F., Langen, U. H., Stehling, M., Nagasawa, T., Ferrara, N., Borggrefe, T. and Adams, R. H. (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915-927.   DOI
33 Religa, P., Cao, R., Religa, D., Xue, Y., Bogdanovic, N., Westaway, D., Marti, H. H., Winblad, B. and Cao, Y. (2013) VEGF significantly restores impaired memory behavior in Alzheimer's mice by improvement of vascular survival. Sci. Rep. 3, 2053.   DOI
34 Roitbak, T., Li, L. and Cunningham, L. A. (2008) Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling. J. Cereb. Blood Flow Metab. 28, 1530-1542.   DOI
35 Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H. and Frisen, J. (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219-1227.   DOI
36 Austin, C. P., Feldman, D. E., Ida, J. A., Jr. and Cepko, C. L. (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121, 3637-3650.   DOI
37 Bae, S. K., Kim, S. R., Kim, J. G., Kim, J. Y., Koo, T. H., Jang, H. O., Yun, I., Yoo, M. A. and Bae, M. K. (2006) Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1. FEBS Lett. 580, 4105-4113.   DOI
38 Bae, Y. H., Joo, H., Bae, J., Hyeon, S. J., Her, S., Ko, E., Choi, H. G., Ryu, H., Hur, E. M., Bu, Y. and Lee, B. D. (2018) Brain injury induces HIF-1alpha-dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death Dis. 9, 1125.   DOI
39 Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R. and Goedert, M. (1997) Alpha-synuclein in Lewy bodies. Nature 388, 839-840.   DOI
40 Spuch, C., Antequera, D., Portero, A., Orive, G., Hernandez, R. M., Molina, J. A., Bermejo-Pareja, F., Pedraz, J. L. and Carro, E. (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31, 5608-5618.   DOI
41 Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T. and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738-4747.   DOI
42 Semenza, G. L. (2007) Life with oxygen. Science 318, 62-64.   DOI
43 Samal, B., Sun, Y., Stearns, G., Xie, C., Suggs, S. and McNiece, I. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14, 1431-1437.   DOI
44 Saura, C. A., Choi, S. Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B. S., Chattarji, S., Kelleher, R. J., 3rd, Kandel, E. R., Duff, K., Kirkwood, A. and Shen, J. (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23-36.   DOI
45 Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI
46 Seymour, T., Nowak, A. and Kakulas, F. (2015) Targeting aggressive cancer stem cells in glioblastoma. Front. Oncol. 5, 159.
47 Shim, J. W. and Madsen, J. R. (2018) VEGF signaling in neurological disorders. Int. J. Mol. Sci. 19, E275.   DOI
48 Shingo, T., Sorokan, S. T., Shimazaki, T. and Weiss, S. (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733-9743.   DOI
49 Shutter, J. R., Scully, S., Fan, W., Richards, W. G., Kitajewski, J., Deblandre, G. A., Kintner, C. R. and Stark, K. L. (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313-1318.
50 Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., Mukherji, M., Metzen, E., Wilson, M. I., Dhanda, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J. and Ratcliffe, P. J. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54.   DOI
51 Estrach, S., Ambler, C. A., Lo Celso, C., Hozumi, K. and Watt, F. M. (2006) Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133, 4427-4438.   DOI
52 Fang, Y., Yu, S., Ma, Y., Sun, P., Ma, D., Ji, C. and Kong, B. (2013) Association of Dll4/notch and HIF-1a-VEGF signaling in the angiogenesis of missed abortion. PLoS ONE 8, e70667.   DOI
53 Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J. and Moore, M. W. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442.   DOI
54 Flugel, D., Gorlach, A., Michiels, C. and Kietzmann, T. (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol. Cell. Biol. 27, 3253-3265.   DOI
55 Franklin, J. L., Berechid, B. E., Cutting, F. B., Presente, A., Chambers, C. B., Foltz, D. R., Ferreira, A. and Nye, J. S. (1999) Autonomous and non-autonomous regulation of mammalian neurite develop-ment by Notch1 and Delta1. Curr. Biol. 9, 1448-1457.   DOI
56 Gustafsson, M. V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., Ruas, J. L., Poellinger, L., Lendahl, U. and Bondesson, M. (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617-628.   DOI
57 Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. and Betsholtz, C. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163-1177.   DOI
58 Gridley, T. (2007) Notch signaling in vascular development and physiology. Development 134, 2709-2718.   DOI
59 Guo, C., Hao, L. J., Yang, Z. H., Chai, R., Zhang, S., Gu, Y., Gao, H. L., Zhong, M. L., Wang, T., Li, J. Y. and Wang, Z. Y. (2016) Deferoxamine-mediated up-regulation of HIF-1alpha prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp. Neurol. 280, 13-23.   DOI
60 Guo, L. H., Alexopoulos, P. and Perneczky, R. (2013) Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer's disease. Eur. Arch. Psychiatry Clin. Neurosci. 263, 553-560.   DOI
61 Ha, T., Moon, K. H., Dai, L., Hatakeyama, J., Yoon, K., Park, H. S., Kong, Y. Y., Shimamura, K. and Kim, J. W. (2017) The retinal pigment epithelium is a notch signaling niche in the mouse retina. Cell Rep. 19, 351-363.   DOI
62 Hamada, Y., Kadokawa, Y., Okabe, M., Ikawa, M., Coleman, J. R. and Tsujimoto, Y. (1999) Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415-3424.   DOI
63 Koivunen, P., Tiainen, P., Hyvarinen, J., Williams, K. E., Sormunen, R., Klaus, S. J., Kivirikko, K. I. and Myllyharju, J. (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J. Biol. Chem. 282, 30544-30552.   DOI
64 Kim, D. H., Yoon, H. J., Cha, Y. N. and Surh, Y. J. (2018) Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic. Res. 52, 1336-1347.   DOI
65 Kim, Y., Park, J. and Choi, Y. K. (2019) The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants (Basel) 8, 121.   DOI
66 Klein, W. L. (2013) Synaptotoxic amyloid-beta oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer's disease? J. Alzheimers Dis. 33 Suppl 1, S49-S65.   DOI
67 Krebs, L. T., Deftos, M. L., Bevan, M. J. and Gridley, T. (2001) The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev. Biol. 238, 110-119.   DOI
68 Li, L., Candelario, K. M., Thomas, K., Wang, R., Wright, K., Messier, A. and Cunningham, L. A. (2014) Hypoxia inducible factor-1alpha (HIF-1alpha) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ. J. Neurosci. 34, 16713-16719.   DOI
69 Lee, J. H., Suk, J., Park, J., Kim, S. B., Kwak, S. S., Kim, J. W., Lee, C. H., Byun, B., Ahn, J. K. and Joe, C. O. (2009) Notch signal activates hypoxia pathway through HES1-dependent SRC/signal transducers and activators of transcription 3 pathway. Mol. Cancer Res. 7, 1663-1671.   DOI
70 Lee, S., Chen, T. T., Barber, C. L., Jordan, M. C., Murdock, J., Desai, S., Ferrara, N., Nagy, A., Roos, K. P. and Iruela-Arispe, M. L. (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691-703.   DOI
71 Li, Y., Wu, L., Yu, M., Yang, F., Wu, B., Lu, S., Tu, M. and Xu, H. (2018) HIF-1alpha is critical for the activation of notch signaling in neurogenesis during acute epilepsy. Neuroscience 394, 206-219.   DOI
72 Liu, J., Zhang, C., Zhao, Y., Yue, X., Wu, H., Huang, S., Chen, J., Tomsky, K., Xie, H., Khella, C. A., Gatza, M. L., Xia, D., Gao, J., White, E., Haffty, B. G., Hu, W. and Feng, Z. (2017) Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression. Nat. Commun. 8, 1823.   DOI
73 Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I. and Gong, C. X. (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 582, 359-364.   DOI
74 Lee, H. and Choi, Y. K. (2018) Regenerative effects of heme oxygenase metabolites on neuroinflammatory diseases. Int J Mol Sci 20, E78.   DOI
75 Lamar, E., Deblandre, G., Wettstein, D., Gawantka, V., Pollet, N., Niehrs, C. and Kintner, C. (2001) Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev. 15, 1885-1899.   DOI
76 Lang, A. E. (2011) A critical appraisal of the premotor symptoms of Parkinson's disease: Potential usefulness in early diagnosis and design of neuroprotective trials. Mov. Disord. 26, 775-783.   DOI
77 Lathia, J. D., Mattson, M. P. and Cheng, A. (2008) Notch: From neural development to neurological disorders. J. Neurochem. 107, 1471-1481.   DOI
78 Harrington, L. S., Sainson, R. C., Williams, C. K., Taylor, J. M., Shi, W., Li, J. L. and Harris, A. L. (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res. 75, 144-154.   DOI
79 Han, T., Yan, J., Chen, H., Ji, Y., Chen, J., Cui, J., Shen, W. and Zou, J. (2019) HIF-1alpha contributes to tube malformation of human lymphatic endothelial cells by upregulating VEGFR-3. Int. J. Oncol. 54, 139-151.
80 Handler, M., Yang, X. and Shen, J. (2000) Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127, 2593-2606.   DOI
81 Hayashi, H. and Kume, T. (2008) Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGFNotch signaling pathways in endothelial cells. PLoS ONE 3, e2401.   DOI
82 Herran, E., Perez-Gonzalez, R., Igartua, M., Pedraz, J. L., Carro, E. and Hernandez, R. M. (2015) Enhanced hippocampal neurogenesis in APP/Ps1 mouse model of Alzheimer's disease after implantation of VEGF-loaded PLGA nanospheres. Curr. Alzheimer Res. 12, 932-940.   DOI
83 Ikonomovic, M. D., Mi, Z. and Abrahamson, E. E. (2017) Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res. Rev. 34, 51-63.   DOI
84 Hewitson, K. S., McNeill, L. A., Riordan, M. V., Tian, Y. M., Bullock, A. N., Welford, R. W., Elkins, J. M., Oldham, N. J., Bhattacharya, S., Gleadle, J. M., Ratcliffe, P. J., Pugh, C. W. and Schofield, C. J. (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351-26355.   DOI
85 Hu, Y. Y., Fu, L. A., Li, S. Z., Chen, Y., Li, J. C., Han, J., Liang, L., Li, L., Ji, C. C., Zheng, M. H. and Han, H. (2014) Hif-1alpha and Hif-2alpha differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349, 67-76.   DOI
86 Hug, C. and Lodish, H. F. (2005) Medicine. Visfatin: a new adipokine. Science 307, 366-367.   DOI
87 Kadesch, T. (2004) Notch signaling: the demise of elegant simplicity. Curr. Opin. Genet. Dev. 14, 506-512.   DOI
88 Imai, Y., Kobayashi, Y., Inoshita, T., Meng, H., Arano, T., Uemura, K., Asano, T., Yoshimi, K., Zhang, C. L., Matsumoto, G., Ohtsuka, T., Kageyama, R., Kiyonari, H., Shioi, G., Nukina, N., Hattori, N. and Takahashi, R. (2015) The Parkinson's disease-associated protein kinase LRRK2 modulates notch signaling through the endosomal pathway. PLoS Genet. 11, e1005503.   DOI
89 Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W. and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by $O_2$-regulated prolyl hydroxylation. Science 292, 468-472.   DOI
90 Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C. H., Beach, T. G., Serrano, G. E., van Westen, D., Londos, E., Cenci, M. A. and Hansson, O. (2015) Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85, 1834-1842.   DOI
91 Kalaria, R. N. (2000) The role of cerebral ischemia in Alzheimer's disease. Neurobiol. Aging 21, 321-330.   DOI
92 Kalaria, R. N., Cohen, D. L., Premkumar, D. R., Nag, S., LaManna, J. C. and Lust, W. D. (1998) Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62, 101-105.   DOI
93 Kanamori, M., Kawaguchi, T., Nigro, J. M., Feuerstein, B. G., Berger, M. S., Miele, L. and Pieper, R. O. (2007) Contribution of Notch signaling activation to human glioblastoma multiforme. J. Neurosurg. 106, 417-427.   DOI
94 Vagnucci, A. H., Jr. and Li, W. W. (2003) Alzheimer’s disease and angiogenesis. Lancet 361, 605-608.   DOI
95 Bae, Y. H., Park, H. J., Kim, S. R., Kim, J. Y., Kang, Y., Kim, J. A., Wee, H. J., Kageyama, R., Jung, J. S., Bae, M. K. and Bae, S. K. (2011) Notch1 mediates visfatin-induced FGF-2 up-regulation and endothelial angiogenesis. Cardiovasc. Res. 89, 436-445.   DOI
96 Baillieul, S., Chacaroun, S., Doutreleau, S., Detante, O., Pepin, J. L. and Verges, S. (2017) Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp. Biol. Med. (Maywood) 242, 1198-1206.   DOI
97 Tammela, T., Zarkada, G., Nurmi, H., Jakobsson, L., Heinolainen, K., Tvorogov, D., Zheng, W., Franco, C. A., Murtomaki, A., Aranda, E., Miura, N., Yla-Herttuala, S., Fruttiger, M., Makinen, T., Eichmann, A., Pollard, J. W., Gerhardt, H. and Alitalo, K. (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202-1213.   DOI
98 Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., Tarkowski, A. and Kumar, P. (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23, 237-243.   DOI
99 Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R. J., 3rd and Shen, J. (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. U.S.A. 107, 9879-9884.   DOI
100 Villa, J. C., Chiu, D., Brandes, A. H., Escorcia, F. E., Villa, C. H., Maguire, W. F., Hu, C. J., de Stanchina, E., Simon, M. C., Sisodia, S. S., Scheinberg, D. A. and Li, Y. M. (2014) Nontranscriptional role of Hif-1alpha in activation of gamma-secretase and notch signaling in breast cancer. Cell Rep. 8, 1077-1092.   DOI
101 Bazzoni, R. and Bentivegna, A. (2019) Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel) 11, E292.   DOI
102 Bar, E. E., Lin, A., Mahairaki, V., Matsui, W. and Eberhart, C. G. (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol. 177, 1491-1502.   DOI
103 Barteczek, P., Li, L., Ernst, A. S., Bohler, L. I., Marti, H. H. and Kunze, R. (2017) Neuronal HIF-1alpha and HIF-2alpha deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. J. Cereb. Blood Flow Metab. 37, 291-306.   DOI
104 Batti, L., Taylor, C. T. and O’Connor, J. J. (2010) Hydroxylase inhibition reduces synaptic transmission and protects against a glutamateinduced ischemia in the CA1 region of the rat hippocampus. Neuroscience 167, 1014-1024.   DOI
105 Beaudry, M., Hidalgo, M., Launay, T., Bello, V. and Darribere, T. (2016) Regulation of myogenesis by environmental hypoxia. J. Cell Sci. 129, 2887-2896.   DOI
106 Benedito, R. and Duarte, A. (2005) Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. Gene Expr. Patterns 5, 750-755.   DOI
107 Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., Thinakaran, G. and Iwatsubo, T. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438-441.   DOI
108 Takeda, K., Ho, V. C., Takeda, H., Duan, L. J., Nagy, A. and Fong, G. H. (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336-8346.   DOI
109 Bray, S. J. (2006) Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678-689.   DOI
110 Braun, S. M. and Jessberger, S. (2014) Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol. Appl. Neurobiol. 40, 3-12.   DOI
111 Wakabayashi, N., Chartoumpekis, D. V. and Kensler, T. W. (2015) Crosstalk between Nrf2 and Notch signaling. Free Radic. Biol. Med. 88, 158-167.   DOI
112 Wakamatsu, Y., Maynard, T. M., Jones, S. U. and Weston, J. A. (1999) NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71-81.   DOI
113 Wang, R., Zhang, Y. W., Zhang, X., Liu, R., Zhang, X., Hong, S., Xia, K., Xia, J., Zhang, Z. and Xu, H. (2006) Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J. 20, 1275-1277.   DOI
114 Wang, Y., Chan, S. L., Miele, L., Yao, P. J., Mackes, J., Ingram, D. K., Mattson, M. P. and Furukawa, K. (2004) Involvement of Notch signaling in hippocampal synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 101, 9458-9462.   DOI
115 Wang, Z., Hu, Y., Xiao, D., Wang, J., Liu, C., Xu, Y., Shi, X., Jiang, P., Huang, L., Li, P., Liu, H. and Qing, G. (2017) Stabilization of Notch1 by the Hsp90 chaperone is crucial for T-cell leukemogenesis. Clin. Cancer Res. 23, 3834-3846.
116 Wei, Z., Chigurupati, S., Arumugam, T. V., Jo, D. G., Li, H. and Chan, S. L. (2011) Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 42, 2589-2594.   DOI
117 Winklhofer, K. F. (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24, 332-341.   DOI
118 Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22, 4082-4090.   DOI
119 Benedito, R., Rocha, S. F., Woeste, M., Zamykal, M., Radtke, F., Casanovas, O., Duarte, A., Pytowski, B. and Adams, R. H. (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110-114.   DOI
120 Bentley, K., Gerhardt, H. and Bates, P. A. (2008) Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250, 25-36.   DOI
121 Bertout, J. A., Patel, S. A., Fryer, B. H., Durham, A. C., Covello, K. L., Olive, K. P., Goldschmidt, M. H. and Simon, M. C. (2009) Heterozygosity for hypoxia inducible factor 1alpha decreases the incidence of thymic lymphomas in a p53 mutant mouse model. Cancer Res. 69, 3213-3220.   DOI
122 Biron, K. E., Dickstein, D. L., Gopaul, R. and Jefferies, W. A. (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS ONE 6, e23789.   DOI
123 Borggrefe, T., Lauth, M., Zwijsen, A., Huylebroeck, D., Oswald, F. and Giaimo, B. D. (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochim. Biophys. Acta 1863, 303-313.   DOI
124 Bradshaw, A., Wickremsekera, A., Tan, S. T., Peng, L., Davis, P. F. and Itinteang, T. (2016) Cancer stem cell hierarchy in glioblastoma multiforme. Front. Surg. 3, 21.
125 Yoon, K. and Gaiano, N. (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709-715.   DOI
126 Winner, B., Regensburger, M., Schreglmann, S., Boyer, L., Prots, I., Rockenstein, E., Mante, M., Zhao, C., Winkler, J., Masliah, E. and Gage, F. H. (2012) Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J. Neurosci. 32, 16906-16916.   DOI
127 Choi, Y. K., Kim, J. H., Kim, W. J., Lee, H. Y., Park, J. A., Lee, S. W., Yoon, D. K., Kim, H. H., Chung, H., Yu, Y. S. and Kim, K. W. (2007) AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J. Neurosci. 27, 4472-4481.   DOI
128 Choi, Y. K., Kim, J. H., Lee, D. K., Lee, K. S., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Carbon monoxide potentiation of l-type Ca2+ channel activity increases HIF-1alpha-independent VEGF expression via an AMPKalpha/SIRT1-mediated PGC-1alpha/ERRalpha axis. Antioxid. Redox Signal. 27, 21-36.   DOI
129 Xia, D., Watanabe, H., Wu, B., Lee, S. H., Li, Y., Tsvetkov, E., Bolshakov, V. Y., Shen, J. and Kelleher, R. J., 3rd (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85, 967-981.   DOI
130 Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., Gritsko, T., Turkson, J., Kay, H., Semenza, G. L., Cheng, J. Q., Jove, R. and Yu, H. (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24, 5552-5560.   DOI
131 Yuen, T. J., Silbereis, J. C., Griveau, A., Chang, S. M., Daneman, R., Fancy, S. P. J., Zahed, H., Maltepe, E. and Rowitch, D. H. (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158, 383-396.   DOI
132 Zhang, S., Zhang, Z., Sandhu, G., Ma, X., Yang, X., Geiger, J. D. and Kong, J. (2007) Evidence of oxidative stress-induced BNIP3 expression in amyloid beta neurotoxicity. Brain Res. 1138, 221-230.   DOI
133 Choi, Y. K. (2017) A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1alpha gene expression in human retinal endothelial cells. Arch. Pharm. Res. 40, 1433-1442.   DOI
134 Bruick, R. K. and McKnight, S. L. (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340.   DOI
135 Carrica, L., Li, L., Newville, J., Kenton, J., Gustus, K., Brigman, J. and Cunningham, L. A. (2019) Genetic inactivation of hypoxia inducible factor 1-alpha (HIF-1alpha) in adult hippocampal progenitors impairs neurogenesis and pattern discrimination learning. Neurobiol. Learn. Mem. 157, 79-85.   DOI
136 Chai, X., Kong, W., Liu, L., Yu, W., Zhang, Z. and Sun, Y. (2014) A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis. Neural. Regen. Res. 9, 1145-1153.   DOI
137 Choi, Y. K., Kim, C. K., Lee, H., Jeoung, D., Ha, K. S., Kwon, Y. G., Kim, K. W. and Kim, Y. M. (2010) Carbon monoxide promotes VEGF expression by increasing HIF-1alpha protein level via two distinct mechanisms, translational activation and stabilization of HIF-1alpha protein. J. Biol. Chem. 285, 32116-32125.   DOI
138 Chong, Z. Z., Li, F. and Maiese, K. (2005) Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr. Neurovasc. Res. 2, 387-399.   DOI
139 Zhang, X., Chen, T., Zhang, J., Mao, Q., Li, S., Xiong, W., Qiu, Y., Xie, Q. and Ge, J. (2012) Notch1 promotes glioma cell migration and invasion by stimulating beta-catenin and NF-kappaB signaling via AKT activation. Cancer Sci. 103, 181-190.   DOI
140 Winner, B. and Winkler, J. (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 7, a021287.   DOI
141 Christian, K. M., Song, H. and Ming, G. L. (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu. Rev. Neurosci. 37, 243-262.   DOI
142 Claxton, S. and Fruttiger, M. (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr. Patterns 5, 123-127.   DOI
143 Coleman, M. L., McDonough, M. A., Hewitson, K. S., Coles, C., Mecinovic, J., Edelmann, M., Cook, K. M., Cockman, M. E., Lancaster, D. E., Kessler, B. M., Oldham, N. J., Ratcliffe, P. J. and Schofield, C. J. (2007) Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282, 24027-24038.   DOI
144 Costa, R. M., Honjo, T. and Silva, A. J. (2003) Learning and memory deficits in Notch mutant mice. Curr. Biol. 13, 1348-1354.   DOI
145 Crews, L., Mizuno, H., Desplats, P., Rockenstein, E., Adame, A., Patrick, C., Winner, B., Winkler, J. and Masliah, E. (2008) Alphasynuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci. 28, 4250-4260.   DOI
146 Zheng, X., Linke, S., Dias, J. M., Zheng, X., Gradin, K., Wallis, T. P., Hamilton, B. R., Gustafsson, M., Ruas, J. L., Wilkins, S., Bilton, R. L., Brismar, K., Whitelaw, M. L., Pereira, T., Gorman, J. J., Ericson, J., Peet, D. J., Lendahl, U. and Poellinger, L. (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 105, 3368-3373.   DOI
147 Cunningham, L. A., Candelario, K. and Li, L. (2012) Roles for HIF-1alpha in neural stem cell function and the regenerative response to stroke. Behav. Brain Res. 227, 410-417.   DOI
148 Choi, Y. K., Park, J. H., Baek, Y. Y., Won, M. H., Jeoung, D., Lee, H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2016) Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca2+ channel-mediated PGC-1alpha/ERRalpha activation. Biochem. Biophys. Res. Commun. 479, 297-304.   DOI
149 Choi, Y. K., Park, J. H., Yun, J. A., Cha, J. H., Kim, Y., Won, M. H., Kim, K. W., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2018) Heme oxygenase metabolites improve astrocytic mitochondrial function via a Ca2+-dependent HIF-1alpha/ERRalpha circuit. PLoS ONE 13, e0202039.   DOI
150 Cui, J. G., Fraser, P. E., St. George-Hyslop, P., Westaway, D. and Lukiw, W. J. (2004) Potential roles for presenilin-1 in oxygen sensing and in glial-specific gene expression. Neuroreport 15, 2025-2028.   DOI
151 De Strooper, B. and Konig, G. (1999) Alzheimer’s disease. A firm base for drug development. Nature 402, 471-472.   DOI
152 Dengler, V. L., Galbraith, M. and Espinosa, J. M. (2014) Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1-15.   DOI
153 Desmond, D. W., Moroney, J. T., Sano, M. and Stern, Y. (2002) Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke 33, 2254-2260.   DOI
154 Dietrich, L. S., Fuller, L., Yero, I. L. and Martinez, L. (1966) Nicotinamide mononucleotide pyrophosphorylase activity in animal tissues. J. Biol. Chem. 241, 188-191.   DOI
155 Diez, H., Fischer, A., Winkler, A., Hu, C. J., Hatzopoulos, A. K., Breier, G. and Gessler, M. (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp. Cell Res. 313, 1-9.   DOI
156 Dong, X., Wang, Y. S., Dou, G. R., Hou, H. Y., Shi, Y. Y., Zhang, R., Ma, K., Wu, L., Yao, L. B., Cai, Y. and Zhang, J. (2011) Influence of Dll4 via HIF-1alpha-VEGF signaling on the angiogenesis of choroidal neovascularization under hypoxic conditions. PLoS ONE 6, e18481.   DOI
157 Donoviel, D. B., Hadjantonakis, A. K., Ikeda, M., Zheng, H., Hyslop, P. S. and Bernstein, A. (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801-2810.   DOI
158 Liu, Y. V. and Semenza, G. L. (2007) RACK1 vs. HSP90: Competition for HIF-1 alpha degradation vs. stabilization. Cell Cycle 6, 656-659.   DOI
159 Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N. and Semenza, G. L. (2007) RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitorinduced degradation of HIF-1alpha. Mol. Cell 25, 207-217.   DOI