• Title/Summary/Keyword: Neural Networks model

Search Result 1,896, Processing Time 0.032 seconds

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Two-Stage forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-436
    • /
    • 2000
  • The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

A Study on the Inverse Calibration of Industrial Robot Using Neural Networks (신경회로망을 이용한 산업용 로봇의 역보정에 관한연구)

  • 서운학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.108-115
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$3 to $\pm$0.1.

  • PDF

A Channel Management Technique using Neural Networks in Wireless Networks (신경망를 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.115-119
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel alteration model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRN model. The numerical results show that the difference between the value of g by backpropagation and that value by SRN model is ignorable.

  • PDF

A Study on Mix Design Model of High Strength Concrete using Neural Networks (신경망을 이용한 고강도 콘크리트 배합설계모델에 관한 연구)

  • Lee, Yu-Jin;Lee, Sun-Kwan;Kim, Yeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.253-254
    • /
    • 2012
  • The purpose of this study is to suggest and verify high-strength concrete mix design model applying neural network theory, in order to minimize effort and time wasted by using trial and error method utill now. There are 7 input and 2 output to predict mix design. 40 data of mix design were learned with back-propagation algorithm. Then they are repeatedly learned back-propagation in neural network theory. Also, to verify predicted model, we analyzed and compared value predicted from 60MPa mix design with value measured by actual compressive strength test.

  • PDF

Optimal Model Design of Software Process Using Genetically Fuzzy Polynomial Neyral Network (진화론적 퍼지 다항식 뉴럴 네트워크를 이용한 소프트웨어 공정의 최적 모델 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2873-2875
    • /
    • 2005
  • The optimal structure of the conventional Fuzzy Polynomial Neural Networks (FPNN)[3] depends on experience of designer. For the conventional Fuzzy Polynomial Neural Networks, input variable number, number of input variable, number of Membership Functions(MFs) and consequence structures are selected through the experience of a model designer iteratively. In this paper, we propose the new design methodology to find the optimal structure of Fuzzy Polymomial Neural Network by using Genetic Algorithms(GAs)[4, 5]. In the sequel, It is shown that the proposed Advanced Genetic Algorithms based Fuzzy Polynomial Neural Network(Advanced GAs-based FPNN) is more useful and effective than the existing models for nonlinear process. We used Medical Imaging System(MIS)[6] data to evaluate the performance of the proposed model.

  • PDF

Unknown Parameter Identifier Design of Discrete-Time DC Servo Motor Using Artificial Neural Networks

  • Bae, Dong-Seog;Lee, Jang-Myung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.207-213
    • /
    • 2000
  • This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.

  • PDF

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

Speed Sensorless of Induction Motor using 2 layer Neural Networks (2단 신경회로망을 이용한 유도전동기의 센서리스제어)

  • Lee, Chang-Min;Choi, Chul;Park, Sung-Joon;Kim, Chul-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.409-412
    • /
    • 2000
  • This paper investigates a novel speed identification of induction motor using 2 layer neural networks. The proposed control strategy is based on neural networks using model of full order state observer. in the proposed neural networks system the error between the desired variable and the adaptive variable is back-propagated to adjust the rotor speed, So that the adaptive variable will coincide with the desired variable. The proposed control algorithm is verified through simulation and experiment using th digital signal processor of TMS320C31

  • PDF