1 |
Bahari, R.A., Ali Abssaspour, R., Pahlavi, P. (2014) Prediction of concentrations using temperature inversion effects based on an artificial neural network, The ISPRS international conference of Geospatial information research, 15-17 November, Tehran, Iran.
|
2 |
Caputo, M., Gimenez, M., Schlamp, M. (2003) Intercomparison of atmospheric dispersion models. Atmospheric Environment 37, 2435-2449.
DOI
|
3 |
Chung, K.L., Farid AitSahlia (2003) Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance, Springer Undergraduate Texts in Mathematics and Technology, ISSN 0172-6056.
|
4 |
Cohen, S., Intrator, N. (2002) Automatic model selection in a hybrid perceptron/radial network; Information Fusion. Special Issue on Multiple Experts 3(4), 259-266.
|
5 |
Deng, X., Zhang, F., Rui, W., long, F., Wang, L., Feng, Z., Chen, D., Ding, W. (2013) -induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro 27(6), 1762-1770.
DOI
|
6 |
Dong, G.H., Zhang, P., Sun, B., Zhang, L., Chen, X., Ma, N. (2012) Long term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12 year population - based retrospective cohort study. Respiration 84(5), 360-368.
DOI
|
7 |
Eleuteri, A., Tagliaferri, R., Milano, L. (2005) A novel information geometric approach to variable selection in MLP networks. Neural Network 18(10), 1309-1318.
DOI
|
8 |
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J. (2015) Artificial neural network forecasting of pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment 107, 118-128.
DOI
|
9 |
Goss, C.H., Newsom, S.A., Schildcrout, J.S., Sheppard, L., Kaufman, J.D. (2004) Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 169(7), 816-821.
DOI
|
10 |
Hambli, R. (2011) Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering 27(4), 461-475.
DOI
|
11 |
Hanna, S.R., Paine, R., Heinold, D., Kintigh, E., Baker, D. (2007) Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST 3 in the Houston ship channel area. Journal of Applied Meteorology and Climatology 46, 1372-1382.
DOI
|
12 |
Kohavi, R., John, G.H. (1997) Wrappers for feature subset selection. Artificial Intelligence 97, 273-324.
DOI
|
13 |
Harsham, D.K., Bennett, M. (2008) A sensitivity study of validation of three regulatory dispersion models. American Journal of Environmental Sciences 4(1), 63-76.
DOI
|
14 |
Haykin, S. (1999) Neural networks: a comprehensive foundation. (2nd ed.) Upper Saddle River, New Jersey: Prentice Hal.
|
15 |
Jones, R.M., Nicas, M. (2014) Benchmarking of a Markov multizone model of contaminant transport. Annals of Occupational Hygiene 58(8), 1018-1031.
DOI
|
16 |
Kohohen, T. (1984) Self-organization and associative memory. New York: Springer-Verlag.
|
17 |
Krause, P., Boyle, D.P., Base, F. (2005) Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5, 89-97.
DOI
|
18 |
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Li, P., Xin, J.Y., Wang, Y.S., Wang, S.G., Li, G.X., Pan, X.C., Liu, Z.R., Wang, L.L. (2015) Reinstate regional transport of as a major cause of severe haze in Beijing. Proceeding of the National Academy of Sciences of the United States of America 112, E2739-E2740.
DOI
|
19 |
Kuncheva, L. (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York, USA.
|
20 |
Kurt, A., Gulbagci, B., Karaca, F., Alagha, O. (2008) An online air pollution forecasting system using neural networks. Environment International 34, 592-598.
DOI
|
21 |
Logofet, D.O., Lensnaya, E.V. (2000) The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling 2(3), 285-298.
|
22 |
Niska, H., Rantamaki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J. (2005) Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment 39(35), 6524-6536.
DOI
|
23 |
Nicas, M. (2014) Markov modeling of contaminant concentrations in indoor air. American Journal of Environmental Sciences, 61(4), 484-491.
|
24 |
Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G. (2003) Extensive evaluation of neural network models for the prediction of and concentrations, compared with a deterministic modeling system and measurements in central Helsinki. Atmospheric Environment 37, 4539-4550.
DOI
|
25 |
Niska, H., Heikkinen, M., Kolehmainen, M. (2006) Genetic algorithms and sensitivity analysis applied to select inputs of a multi-layer perceptron for the prediction of air pollutant time-series. Chapter Intelligent data engineering and automated learning-IDEAL2006 volume 4224 of the series lecture notes in computer science pp. 224-231 springer publisher.
|
26 |
Orr, M.J.L. (1996) Introduction to radial basis function networks, University of Edinbergh, EH89LW.
|
27 |
Owega, S., Khan, B.U.Z., Evans, G.J., Jervis, R.E., Fila, M. (2006) Identification of long-range aerosol transport patterns to Toronto via classification of back trajectories by cluster analysis and neural network techniques. Chemo Metrics and Intelligent Laboratory Systems 83(1), 26-33.
DOI
|
28 |
Romanof, N. (1982), A Markov chain model for the mean daily concentrations. Atmospheric Environment 16(8), 1895-1897.
DOI
|
29 |
Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M. (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy 30, 693-708.
DOI
|
30 |
Rumelhart, D.E., McClelland, J.L. (1986) Parallel distribution processing: Exploration in the microstructure of cognition, Cambridge, MA: MIT Press.
|
31 |
Slaughter, J.C., Lumley, T., Sheppard, L., Koenig, J.Q., Shapiro, G.G. (2003) Effects of ambient air pollution on symptom severity and medication use in children with asthma. Annals of Allergy, Asthma and Immunology 91(4), 346-353.
DOI
|
32 |
Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N. (2006) forecasting for Thessaloniki, Greece. Environ. Modell. Softw. 21, 559-565.
DOI
|
33 |
Song, X.M. (1996) Radial basis function networks for empirical modeling of chemical process. MSc thesis, University of Helsinki.
|
34 |
Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S. (2013) Prediction of 24-hour-average concentrations using a hidden Markov model with different emission distributions in Northern California. Science of the Total Environment 443, 93-103.
DOI
|
35 |
Taylor, H., Karlin, S. (1998) An Introduction to Stochastic Modeling. Academic Press, San Diego, California.
|
36 |
Voukantsis, D., Karatzas, K., Kukkonen, J., Rasanen, T., Karppinen, A., Kolehmainen, M. (2011) Intercomparison of air quality data using principal component analysis, and forecasting of and concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment 409, 1266-1276.
DOI
|
37 |
Zurada, J.M. (1992) Introduction to Artificial Neural Systems, PWS; Singapore, 195-196.
|
38 |
Wang, X., Liu, W. (2012) Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain. Physics Procedia 24, 1601-1606.
DOI
|
39 |
Wilks, D.S. (2006) Statistical methods in the atmospheric sciences. 2nd ed. Academic Press, xvii, 627 p.
|
40 |
Zickus, M., Greig, A.J., Niranjan, M. (2002) Comparison of four machine learning methods for predicting concentration in Helsinki, Finland. Water, Air and Soil Pollution 2(5), 717-729.
DOI
|