• 제목/요약/키워드: Neural Net

검색결과 763건 처리시간 0.021초

위성 영상 분류를 위한 규칙 기반 훈련 집합 선택에 관한 연구 (A Study on the Rule-Based Selection of Trainging Set for the Classification of Satellite Imagery)

  • 엄기문;이쾌희
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1763-1772
    • /
    • 1996
  • 기존의 위성 영상 분류를 위한 훈련 집합의 선택은 대부분 사용자가 직접 측량하 거나 지도로부터 얻어진 데이터를 이용하여 수작업을 통하여 얻는 것이 보통이다. 그러나 이러한 작업에는 시간과 비용이 많이 소요되며, 같은 지역 내에서도 사용하는 특징값의 변화가 다양하게 나타날 수 있다. 이러한 다양성은 신경망으로 하여금 분류 데이터에 대한 강인성은 줄 수 있으나, 학습 시간이 많이 소요되는 단점을 수반하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위하여 훈련 집합의 선택시 먼저 분류 하고자 하는 지역의 대역별 밝기 분포를 조사하여 일정한 조건을 만족하는 화소들만을 훈련 집합으로 선택하는 알고리즘을 제안하였다. 이 알고리즘을 사용하여 SPOT의 위성 으로부터 얻은 다중 분광 영상에 대해 훈련 집합을 선택하고 역전과 신경망에 의해 학습한 후 분류한 결과, 기존의 사용자에 의해 선택된 훈련 집합보다 수렴속도가 빠르고, 분류 성능이 놓은 결과를 보였다. 또한 밝기 정보의에 NDVI( NormalizelD Vegetation Index)와 텍스쳐 특징을 이용 함으로써 분류 성능이 개선됨을 확인하였다.

  • PDF

가상 훈련 데이터를 사용하는 소프트웨어 품질 분류 모델 (Software Quality Classification Model using Virtual Training Data)

  • 홍의석
    • 한국콘텐츠학회논문지
    • /
    • 제8권7호
    • /
    • pp.66-74
    • /
    • 2008
  • 소프트웨어 개발 프로세스의 초기 단계에서 결함경향성이 많은 모듈들을 예측하는 위험도 예측 모델은 프로젝트 자원할당에 도움을 주어 전체 시스템의 품질을 개선시키는 역할을 한다. 설계 복잡도 메트릭에 기반을 둔 여러 예측 모델들이 제안 되었지만 대부분 훈련 데이터 집합을 필요로 하는 모델들이었고 훈련 데이터 집합을 보유하고 있지 않은 대부분의 개발 집단들은 이들을 사용할 수 없다는 문제점이 있었다. 본 논문에서는 잘 알려진 감독형 학습 모델인 오류 역전파 신경망 모델에 SDL 시스템 명세를 정량화하여 적용한 예측 모델을 개발하였으며, 기존 학습 모델들의 문제점을 해결하기 위해 이 모델을 여러 제약조건을 가지고 만든 가상 훈련데이터집합으로 학습시켰다. 제안 모델의 사용가능성을 알아보기 위해 몇가지 모의실험을 수행 하였으며, 그 결과 제안 모델이 훈련 데이터 집합이 없는 개발 집단에서는 실제 데이터로 훈련된 예측 모델의 대안으로 사용될 수 있음을 보였다.

센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구 (Additive Manufacturing for Sensor Integrated Components)

  • 정임두;이민식;우영진;김경태;유지훈
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

직접부하제어자원으로서 에어컨 주기제어 방법론 개발 (Development of Control Method for Air-Conditioner as the Resources of DLC)

  • 두석배;김정욱;김형중;김회철;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.145-147
    • /
    • 2005
  • This paper presents a methodology for satisfying the thermal comfort of Indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. KEPCO(Korea Electric Power Corporation) use the fixed duty cycle control method regardless of the indoor thermal environment. This method has disadvantages that energy saying depends on the set-point value of the Air-Conditioner and DLC has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. A variable duty cycle estimates the PMV(Predict Mean Vote) at the next step with a predicted temperature and humidity coming from the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. The proposed methodology uses the historical real data of Sep. 7th, 2001 from a classroom in seoul to verify the effectiveness of the variable duty cycle method comparing with fixed duty cycle. The result shows that the variable duty cycle reduces the peak demand to 2.6times more than fixed duty cycle and increases the load control ratio by 8% more. Based on the variable duty cycle control algorithm, the effectiveness of DLC is much more improved as compared with the fixed duty cycle.

  • PDF

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석 (Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks)

  • 배지훈;임준호;유재학;김귀훈;김준모
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.35-41
    • /
    • 2017
  • 본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.

퍼지 분류를 이용한 초기 위험도 예측 모델 (Early Criticality Prediction Model Using Fuzzy Classification)

  • 홍의석;권용길
    • 한국정보처리학회논문지
    • /
    • 제7권5호
    • /
    • pp.1401-1408
    • /
    • 2000
  • 소프트웨어 개발 초기 단계의 문제점이 개발 후반부 산물의 품질에 심각한 영향을미치기 때문에 설계 명세를 이용하여 위험 부분을 예측하는위험도 예측 모델은 전체 시스템 개발비용을 낮추는 데 중요한 역할을 하고 있으며, 이러한 예측 모델은 결과 산물이 매우 크고 실행 정확성이 요구되는통신 소프트웨어 같은 실시간 시스템 설계에 더욱 필요하다. 판별분석, 인공신경망, 분류트리 등의 기법들을 이용한 모델들이 제안되었으나 이들은 결과에 대한 원인 분석의 어려움, 낮은 확장성 등의 문제점들을 지니고 있었다. 본 논문에서는 유전자 알고리즘에 의해 구축된 퍼지 규칙 베이스를 이용한 위험도 예측 모델을 제안한다. 제안 모델은 예측 결과에 대한 원인 분석이 용이하고 높은 확정성과 적용성을 지니고 규칙수에 대한 제안이 없다. 이러한 내부특성들 비교의 모의 실을 통한 예측 정확도 비교를 통해 제안 모델이 타 모델들보다 우수함을 보였다.

  • PDF

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계 (Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index)

  • 이수용;손소영;김철응;이일병
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.52-56
    • /
    • 2004
  • 주식시장에서 KOSPI200지수의 상승 또는 하락으로 분류 및 예측하는 정보는 선물 및 옵션시장에서 포토폴리오를 설계할 때 의사결정을 위해 중요한 기준이 된다. 경제지표인 시계열 패턴들의 향후 추세는 가장 최근의 경제패턴에 매우 종속적이기 때문에 최근의 패턴들을 가장 우선적으로 학습해야 할 필요가 있다. 본 논문에서는 시계열분석, 신경회로망, 그리고 다양한 분야에서 각광을 받고 있는 SVM(Support Vector Machine)과 Fuzzy SVM 모형의 분류 및 예측성능을 비교하였다. 특히 학습 DB에 따라 시계열성 속성을 갖는 퍼지소속함수에 가장 적합한 차원을 제시함으로서 Fuzzy SVM이 우수함을 입증하였다.

데이터 마이닝을 이용한 지능형 전공지도시스템 연구 (A Date Mining Approach to Intelligent College Road Map Advice Service)

  • 최덕원;조경필;신진규
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.266-273
    • /
    • 2005
  • 대학의 학사관리 시스템은 학생이 입학하여 졸업하기까지 수행하는 여러 가지 학사활동 및 과외활동으로부터 발생하는 방대한 데이터를 보유하고 있다. 그러나 이들을 학생들의 전공지도나 진로지도에 효과적으로 활용하지 못하고 있다. 본 논문에서는 학사관리 시스템에 축적된 정보를 대상으로 데이터 마이닝 기법을 적용하여 학생들의 전공선택 및 진로지도에 도움을 줄 수 있는 새로운 정보와 지식을 생성하는 방법을 개발, 제시하였다. 이 연구를 위하여 요인분석, 계층분석 (AHP), 인공신경망, CART 기법 등을 동원하여 데이터 마이닝을 수행함으로써 유용한 지식과 규칙을 생성하였다. 방법론의 개발에 사용된 기본 자료들은 학생들의 Holland 적성검사, TOEIC 점수, 이수과목, 평점 등이다. 연구의 결과로서 기존의 학생지도 담당자가 수작업으로는 알아낼 수 없었던 학생지도에 관한 유용한 규칙을 도출할 수 있었다.

  • PDF