• Title/Summary/Keyword: Network-on-chip architecture

Search Result 85, Processing Time 0.029 seconds

A Novel Development of Distributed intelligent Control Module Based on the LonWorks Neuron Chip for Air handling Units in the Heating, Ventilating and Air Conditioning (Neuron Chip을 이용한 공기조화설비 제어모듈 개발)

  • 홍원표;김동화;김중곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.251-257
    • /
    • 2003
  • In this paper, a new distributed intelligent control module based on LonWorks fieldbus for air handling unit(AHU) of heating, ventilating and air-conditioning(HVAC) is proposed to replace with a conventional direct digital control(DDC) with 32 bit microprocessor. The proposed control architecture has a excellent features such as highly compact and flexible function design, a low priced smart front-end and reliable performance with various functions. This also addresses issues in control network configuration, logical design of field devices by S/W tool, Internet networking and electronic element installation. Experimental results showing the system performance are also included in this paper.

  • PDF

Evaluation system of dynamically changing cryptographic algorithms using the SEBSW-1:PCI-based encryption and decryption PC board

  • Kajisaki, Hirotsugu;Kurokawa, Takakazu
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.145-148
    • /
    • 2002
  • In a network communication process, cryptographic algorithms play important role for secure process. This paper presents a new system architecture named "DCCS." This system can handle flexible operations of both cryptographic algorithms and the keys. For experimental evaluation, two representative cryptographic algorithms DES and Triple-DES are designed and implemented into an FPGA chip on the SEBSW-1. Then the developed board is confirmed to change its cryptographic algorithms dynamically. Also its throughput confirmed the ability of the real-time net-work use of the designed system.

  • PDF

A 256-Radix Crossbar Switch Using Mux-Matrix-Mux Folded-Clos Topology

  • Lee, Sung-Joon;Kim, Jaeha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.760-767
    • /
    • 2014
  • This paper describes a high-radix crossbar switch design with low latency and power dissipation for Network-on-Chip (NoC) applications. The reduction in latency and power is achieved by employing a folded-clos topology, implementing the switch organized as three stages of low-radix switches connected in cascade. In addition, to facilitate the uniform placement of wires among the sub-switch stages, this paper proposes a Mux-Matrix-Mux structure, which implements the first and third switch stages as multiplexer-based crossbars and the second stage as a matrix-type crossbar. The proposed 256-radix, 8-bit crossbar switch designed in a 65nm CMOS has the simulated power dissipation of 1.92-W and worst-case propagation delay of 0.991-ns while operating at 1.2-V supply and 500-MHz frequency. Compared with the state-of-the-art designs in literature, the proposed crossbar switch achieves the best energy-delay-area efficiency of $0.73-fJ/cycle{\cdot}ns{\cdot}{\lambda}^2$.

A Novel Scalable and Storage-Efficient Architecture for High Speed Exact String Matching

  • Peiravi, Ali;Rahimzadeh, Mohammad Javad
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.545-553
    • /
    • 2009
  • String matching is a fundamental element of an important category of modern packet processing applications which involve scanning the content flowing through a network for thousands of strings at the line rate. To keep pace with high network speeds, specialized hardware-based solutions are needed which should be efficient enough to maintain scalability in terms of speed and the number of strings. In this paper, a novel architecture based upon a recently proposed data structure called the Bloomier filter is proposed which can successfully support scalability. The Bloomier filter is a compact data structure for encoding arbitrary functions, and it supports approximate evaluation queries. By eliminating the Bloomier filter's false positives in a space efficient way, a simple yet powerful exact string matching architecture is proposed that can handle several thousand strings at high rates and is amenable to on-chip realization. The proposed scheme is implemented in reconfigurable hardware and we compare it with existing solutions. The results show that the proposed approach achieves better performance compared to other existing architectures measured in terms of throughput per logic cells per character as a metric.

A Study on the VCR Cryptographic System Design Adapted in Wire/Wireless Network Environments (유무선 네트워크 환경에 적합한 VCR 암호시스템 설계에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.65-72
    • /
    • 2009
  • This paper proposed VCR cryptographic algorithm that adapted in TCP/IP protocol architecture and wire/wireless communication network environments. we implemented by hardware chip level because proposed VCR cryptographic algorithm perform scalable & reconfigurable operations into the security system. Proposed VCR cryptographic algorithm strengthens security vulnerability of TCP/IP protocol and is very profitable real-time processing and encipherment of high-capacity data and multi-user communication because there is important purpose to keep security about many user as that have variable round numbers function in network environments.

Tutorial: Design and Optimization of Power Delivery Networks

  • Lee, Woojoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.349-357
    • /
    • 2016
  • The era of the Internet of Things (IoT) is upon us. In this era, minimizing power consumption becomes a primary concern for system-on-chip designers. While traditional power minimization and dynamic power management (DPM) techniques have been heavily explored to improve the power efficiency of devices inside very large-scale integration (VLSI) platforms, there is one critical factor that is often overlooked, which is the power conversion efficiency of a power delivery network (PDN). This paper is a tutorial that focuses on the power conversion efficiency of the PDN, and introduces novel methods to improve it. Circuit-, architecture-, and system-level approaches are presented to optimize PDN designs, while case studies for three different VSLI platforms validate the efficacy of the introduced approaches.

MPSoC Design Space Exploration Based on Static Analysis of Process Network Model (프로세스 네트워크 모델의 정적 분석에 기반을 둔 다중 프로세서 시스템 온 칩 설계 공간 탐색)

  • Ahn, Yong-Jin;Choi, Ki-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.7-16
    • /
    • 2007
  • In this paper, we introduce a new design environment for efficient multiprocessor system-on-chip design space exploration. The design environment takes a process network model as input system specification. The process network model has been widely used for modeling signal processing applications because of its excellent modeling power. However, it has limitation in predictability, which could cause severe problem for real time systems. This paper proposes a new approach that enables static analysis of a process network model by converting it to a hierarchical synchronous dataflow model. For efficient design space exploration in the early design step, mapping application to target architectures has been a crucial part for finding better solution. In this paper, we propose an efficient mapping algorithm. Our mapping algorithm supports both single bus architecture and multiple bus architecture. In the experiments, we show that the automatic conversion approach of the process network model for static analysis is performed successfully for several signal processing applications, and show the effectiveness of our mapping algorithm by comparing it with previous approaches.

Design and Implementation of Content Switching Network Processor and Scalable Switch Fabric

  • Chang, You-Sung;Yi, Ju-Hwan;Oh, Hun-Seung;Lee, Seung-Wang;Kang, Moo-Kyung;Chun, Jung-Bum;Lee, Jun-Hee;Kim, Jin-Seok;Kim, Sang-Ho;Jung, Hee-Jae;Hong, Il-Sung;Kim, Yong-Hwan;Lee, Yu-Sik;Kyung, Chong-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.167-174
    • /
    • 2003
  • This paper proposes a network processor especially optimized for content switching. With 2Gbps port capability, it integrates packet processor cluster, content-based classification engine and traffic manager on a single chip. A switch fabric architecture is also designed for scale-up of the network processor's capability over hundreds gigabit bandwidth. Applied in real network systems, the network processor shows wire-speed network address translator (NAT) and content-based switching performance.

Model Validation of a Fast Ethernet Controller for Performance Evaluation of Network Processors (네트워크 프로세서의 성능 예측을 위한 고속 이더넷 제어기의 상위 레벨 모델 검증)

  • Lee Myeong-jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • In this paper, we present a high-level design methodology applied on a network system-on-a-chip(SOC) using SystemC. The main target of our approach is to get optimum performance parameters for high network address translation(NAT) throughput. The Fast Ethernet media access controller(MAC) and its direct memory access(DMA) controller are modeled with SystemC in transaction level. They are calibrated through the cycle-based measurement of the operation of the real Verilog register transfer language(RTL). The NAT throughput of the model is within $\pm$10% error compared to the output of the real evaluation board. Simulation speed of the model is more than 100 times laster than the RTL. The validated models are used for intensive architecture exploration to find the performance bottleneck in the NAT router.

A Study of FC-NIC Design Using zynq SoC for Host Load Reduction (호스트 부하 경감 달성을 위한 zynq SoC를 적용한 FC-NIC 설계에 관한 연구)

  • Hwang, Byeung-Chang;Seo, Jung-hoon;Kim, Young-Su;Ha, Sung-woo;Kim, Jae-Young;Jang, Sun-geun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.423-432
    • /
    • 2015
  • This paper shows that design, manufacture and the performance of FC-NIC (fibre channel network interface card) for network unit configuration which is based on one of the 5 main configuration items of the common functional module for IMA (integrated modular Avionics) architecture. Especially, FC-NIC uses zynq SoC (system on chip) for host load reductions. The host merely transmit FC destination address, source memory location and size information to the FC-NIC. After then the FC-NIC read the host memory via DMA (direct memory access). FC upper layer protocol and sequence process at local processor and programmable logic of FC-NIC zynq SoC. It enables to free from host load for external communication. The performance of FC-NIC shows average 5.47 us low end-to-end latency at 2.125 Gbps line speed. It represent that FC-NIC is one of good candidate network for IMA.