• Title/Summary/Keyword: Network traffic data

Search Result 1,562, Processing Time 0.033 seconds

Structure Analysis of ARS Cryptoprocessor based on Network Environment (네트워크 환경에 적합한 AES 암호프로세서 구조 분석)

  • Yun, Yeon-Sang;Jo, Kwang-Doo;Han, Seon-Kyoung;You, Young-Gap;Kim, Yong-Dae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.3-11
    • /
    • 2005
  • This paper presents a performance analysis model based on an M/M/1 queue and Poisson distribution of input data traffic. The simulation on a pipelined AES system with processing rate of 10 rounds per clock shows $4.0\%$ higher performance than a non-pipelined version consuming 10 clocks per transaction. Physical implementation of pipelined AES with FPGA takes 3.5 times bigger gate counts than the non-pipelined version whereas the pipelined version yields only $3.5\%$ performance enhancement. The proposed analysis model can be used to optimize cost-performance of AES hardware designs.

A Queue Management Mechanism for Service groups based on Deep Reinforcement Learning (심층강화학습 기반 서비스 그룹별 큐 관리 메커니즘)

  • Jung, Seol-Ryung;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1099-1104
    • /
    • 2020
  • In order to provide various types of application services based on the Internet, it is ideal to guarantee the quality of service(QoS) for each flow. However, realizing these ideas is not an easy task.. It is effective to classify multiple flows having the same or similar service quality requirements into same group, and to provide service quality for each group. The queue management mechanism in the router plays a very important role in order to efficiently transmit data and to support differentiated quality of service for each service. In order to efficiently support various multimedia services, an intelligent and adaptive queue management mechanism is required. This paper proposes an intelligent queue management mechanism based on deep reinforcement learning that decides whether to deliver packets for each group based on the traffic information of each flow group flowing in for a certain period of time and the current network state information.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.

Power Consumption Analysis of Asynchronous RIT mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT 모드 MAC의 전력소모 분석)

  • Dongwon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.23-28
    • /
    • 2023
  • In a wireless smart utility network communication system, an asynchronous low power MAC is standardized and used according to IEEE 802.15.4e. An asynchronous MAC called RIT (Receiver Initiated Transmission) has a characteristic in which delay time and power consumption are greatly affected by a check-in interval (RIT period). By waking up from sleep every check-in interval and checking whether there is data to be received, power consumption in the receiving end can be drastically reduced, but power consumption in the transmitting end occurs due to an excessive wakeup sequence. If an excessive wake-up sequence is reduced by shortening the check interval, power consumption of the receiving end increases due to too frequent wake-up. In the RIT asynchronous MAC technique, power consumption performance according to traffic load and operation of check-in interval is analyzed and applied to Wi-SUN construction.

Cluster Management Scheme for Safety Message Dissemination in a VANET Environment (VANET 환경에서 안전 메시지 배포를 위한 클러스터 관리 기법)

  • Pyun, Do-Woong;Lim, Jongtae;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.26-36
    • /
    • 2022
  • Recently, studies have been conducted to cluster vehicles and disseminate safety messages in a VANET environment for driver safety and smoothy traffic. This paper proposes cluster management scheme for safety message dissemination through V2V communication and V2I communication in a VANET environment with high vehicle density and mobility. The proposed scheme reduces packet loss by selecting CH considering reception quality, total data owned by vehicles, moving speed, and connected vehicles, and maintaining cluster head candidates, which are the main agents of message dissemination, considering frequent cluster departures and subscriptions. In addition, the proposed scheme reduces duplicate messages by utilizing clusters by collaborating with a Road side unit(RSU). To prove the excellence of the proposed scheme, various performance evaluations are performed in terms of message packet loss and the number of RSU processing requests. As a result of performance evaluation, the cluster management scheme proposed in this paper shows better performance than the existing scheme.

A Basic Experimental Study on Vibration Power Generator for A Green Traffic Network (녹색교통망을 위한 진동력 발전 기초 실험연구)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Young-Ji;Park, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.675-683
    • /
    • 2009
  • A Basic experimental study for the development of vibration-power generation system from the vibration energy of urban infrastructure, such as a railroad, highway, and bridges, was carried out to harvest electricity from moving vehicles. Starting with the proposal of vibration power generator which converts vibration energy to an electric power by using self-induction technology, the research explains the basic concept of self-induction technology and the dynamic characteristics of a ibration power generator. Also, in order to analyze the correlation of an electromotive force from vibration power generator which depends on external force and vibration speeds, many indoor experiments with various variables were achieved. Based on the experimental results, a vibration power generator system's ability were analyzed. With those results, basic data of vibration power generator system to acquire the maximum available power was confirmed.

Service Differentiation in Ad Hoc Networks by a Modified Backoff Algorithm (애드혹 네트워크 상에서 backoff 알고리즘 수정에 의한 서비스 차별화)

  • Seoung-Seok Kang;Jin Kim
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.414-428
    • /
    • 2004
  • Many portable devices are coming to be commercially successful and provide useful services to mobile users. Mobile devices may request a variety of data types, including text and multimedia data, thanks to the rich content of the Internet. Different types of data and/or different classes of users may need to be treated with different qualities of service. The implementation of service differentiation in wireless networks is very difficult because of device mobility and wireless channel contention when the backoff algorithm is used to resolve contention. Modification of the t)mary exponential backoff algorithm is one possibility to allow the design of several classes of data traffic flows. We present a study of modifications to the backoff algorithm to support three classes of flows: sold, silver, and bronze. For example, the gold c]ass flows are the highest priority and should satisfy their required target bandwidth, whereas the silver class flows should receive reasonably high bandwidth compared to the bronze class flows. The mixture of the two different transport protocols, UDP and TCP, in ad hoc networks raises significant challenges when defining backoff algorithm modifications. Due to the different characteristics of UDP and TCP, different backoff algorithm modifications are applied to each class of packets from the two transport protocols. Nevertheless, we show by means of simulation that our approach of backoff algorithm modification clearly differentiates service between different flows of classes regardless of the type of transport protocol.

A Study on Improving the Billing System of the Wireless Internet Service (무선인터넷 서비스의 과금체계 개선에 관한 연구)

  • Min Gyeongju;Hong Jaehwan;Nam Sangsig;Kim Jeongho
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.597-602
    • /
    • 2005
  • In this study, file size for measurement and the service system's billing data were submitted to a comparative analysis by performing a verification test on the billing system of three major mobile communication services providers, based on the wireless Internet service packet. As shown in the result of the verification test, there were some differences in the billing data due to transmission overhead, according to the network quality that is affected by the wireless environment of mobile operators. Consequently, the packet analysis system was proposed as a means of applying consistent packet billing to all service providers being compared. If the packet analysis system is added to supplement the current billing system various user requirements can be met. Billing by Packet among mobile operators and differentiated billing based on the content value are available, since the packet data can be extracted through protocol analysis by service, and it can be classified by content tape through traffic data analysis. Furthermore, customer's needs can be satisfied who request more information on the detailed usage, and more flexible and diverse billing policies can be supported like application of charging conditions to the non-charging packet handling. All these services are expected to contribute to the popularization of the wireless Internet service, since user complaints about the service charge could be reduced.

A Performance Improvement Scheme for a Wireless Internet Proxy Server Cluster (무선 인터넷 프록시 서버 클러스터 성능 개선)

  • Kwak, Hu-Keun;Chung, Kyu-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.415-426
    • /
    • 2005
  • Wireless internet, which becomes a hot social issue, has limitations due to the following characteristics, as different from wired internet. It has low bandwidth, frequent disconnection, low computing power, and small screen in user terminal. Also, it has technical issues to Improve in terms of user mobility, network protocol, security, and etc. Wireless internet server should be scalable to handle a large scale traffic due to rapidly growing users. In this paper, wireless internet proxy server clusters are used for the wireless Internet because their caching, distillation, and clustering functions are helpful to overcome the above limitations and needs. TranSend was proposed as a clustering based wireless internet proxy server but it has disadvantages; 1) its scalability is difficult to achieve because there is no systematic way to do it and 2) its structure is complex because of the inefficient communication structure among modules. In our former research, we proposed the All-in-one structure which can be scalable in a systematic way but it also has disadvantages; 1) data sharing among cache servers is not allowed and 2) its communication structure among modules is complex. In this paper, we proposed its improved scheme which has an efficient communication structure among modules and allows data to be shared among cache servers. We performed experiments using 16 PCs and experimental results show 54.86$\%$ and 4.70$\%$ performance improvement of the proposed system compared to TranSend and All-in-one system respectively Due to data sharing amount cache servers, the proposed scheme has an advantage of keeping a fixed size of the total cache memory regardless of cache server numbers. On the contrary, in All-in-one, the total cache memory size increases proportional to the number of cache servers since each cache server should keep all cache data, respectively.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.