• Title/Summary/Keyword: Network scheduling

Search Result 949, Processing Time 0.023 seconds

Performance Analysis of Group Scheduling for Core Nodes in Optical Burst Switching Networks (광 버스트 스위칭 네트워크의 코어 노드를 위한 그룹 스케줄링 성능 분석)

  • 신종덕;이재명;김형석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8B
    • /
    • pp.721-729
    • /
    • 2004
  • In this paper, we applied a group scheduling algorithm to core nodes in an optical burst switching (OBS) network and measured its performance by simulation. For the case of core nodes with multi-channel input/output ports, performance of the group scheduling has been compared to that of the immediate scheduling. Since the group scheduling has a characteristic of scheduling a group of bursts simultaneously in a time window using information collected from corresponding burst header packets arrived earlier to a core node, simulation results show that the group scheduling outperforms the immediate scheduling in terms of both burst loss probability and channel utilization and the difference gets larger as the load increases. Another node configuration in which wavelength converters are equipped at the output ports has also been considered. In this case, even though both performance metrics of the group scheduling are almost the same as those of the immediate scheduling in the offered load range between 0.1 and 0.9, the group scheduling has lower wavelength conversion rate than the immediate scheduling by at least a factor of seven. This fact leads us to the conclusion that the group scheduling makes it possible to implement more economical OBS core nodes.

A New Total Coloring Problem in Multi-hop Networks

  • Watanabe, K.;Sengoku, M.;Tamura, H.;Nakano, K.;Shinoda, S.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1375-1377
    • /
    • 2002
  • New graph coloring problems are discussed as models of a multihop network in this report. We consider a total scheduling problem, and prove that this problem is NP-hard. We propose new scheduling models of a multi-hop network for CDMA system, and show the complexity results of the scheduling problems.

  • PDF

A Scheduling Scheme using Partial Channel Information for Ad-hoc Networks (Ad-hoc 망에서 채널의 부분정보를 이용한 스케줄링 기법)

  • 신수영;장영민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11B
    • /
    • pp.1031-1037
    • /
    • 2003
  • A new scheduling scheme, which uses channel quality information of each flow in Bluetooth system of ad-hoc network for effective bandwidth assignment, has been proposed in this paper. By an effective bandwidth assignment, QoS (Quality of Service) could have been ensured in case of asymmetric data traffic, mixed data transmission, and congested data transmission in a specific channel. The scheduling algorithm determines channel weights using partial channel information of flows. Case studies conducted by NS-2 (Network Simulator 2) and Bluehoc simulator has been presented to show the effectiveness of the proposed scheduling scheme.

The Scheduling Problem in Wireless Networks

  • Pantelidou, Anna;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • We describe the fundamental issue of scheduling the allocation of wireless network resources and provide several formulations of the associated problems. The emphasis is on scheduling transmission attempts. We place this problem in the context of existing approaches, like information theoretic and traditional network theoretic ones, as well as novel avenues that open up the possibility of addressing this issue for non-stationary and non-ergodic environments. We summarize concrete recent results for specific special cases that include unicast and multicast traffic, different objective functions, and reduced complexity versions of the problem. We conclude with some thoughts for future work. We identify and single out the cross-layer nature of the problem and include a simple physical-layer criterion in what is mostly a medium access control (MAC) problem.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

Network scheduling algorithm for field bus system (필드 버스 시스템을 위한 네트웍 스케쥴링 알고리즘)

  • 추성호;김일환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1348-1351
    • /
    • 1996
  • In field bus network, field device are connected with a medium. Because a medium must be shared for transmitting data, there are random delay time when data arrive destination station. It is difficult that all data packets are guaranteed synchronization and real-time restriction. In this paper, we show an algorithm that makes network utilization to maximum, guarantees real-time restriction, calculates sampling time at all control loop.

  • PDF

Scheduling algirithm of data sampling times in the real-time distributed control systems

  • Hong, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.112-117
    • /
    • 1992
  • The Real-time Distributed Control Systems(RDCS) consist of several distributed control processes which share a network medium to exchange their data. Performance of feedback control loops in the RDCS is subject to the network-induced delays from sensor to controller and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of the control components which share a network medium. In this study, a scheduling algorithm of determining data sampling times is developed using the window concept, where the sampling data from the control components dynamically share a limited number of windows.

  • PDF

A Study on the Scheduling Algorithm of Job Allocation in Mobile Grid (모바일 그리드에서의 작업 할당 스케줄링 알고리즘에 관한 연구)

  • Kim, Tae-Kyung;Seo, Hee-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.31-37
    • /
    • 2006
  • To achieve the efficient performance within a mobile grid considering the intermittent network connectivity and non-dedicated heterogeneous mobile devices, this paper suggests the scheduling algorithm of job allocation as a viable solution. The suggested scheduling algorithm has two core functions, the prediction of response time for task processing and the identification of the optimal number of mobile devices to process the mobile grid applications. This scheduling algorithm suggests the numerical formulas to calculate the network latency considering the effects of heterogeneous non-dedicated mobile system in wireless network environments. Also we evaluate the performance of mobile grid system using the processing the distributed applications in implemented mobile grid environments.

  • PDF

On the Multiuser Diversity in SIMO Interfering Multiple Access Channels: Distributed User Scheduling Framework

  • Shin, Won-Yong;Park, Dohyung;Jung, Bang Chul
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Due to the difficulty of coordination in the cellular uplink, it is a practical challenge how to achieve the optimal throughput scaling with distributed scheduling. In this paper, we propose a distributed and opportunistic user scheduling (DOUS) that achieves the optimal throughput scaling in a single-input multiple-output interfering multiple-access channel, i.e., a multi-cell uplink network, with M antennas at each base station (BS) and N users in a cell. In a distributed fashion, each BS adopts M random receive beamforming vectors and then selects M users such that both sufficiently large desired signal power and sufficiently small generating interference are guaranteed. As a main result, it is proved that full multiuser diversity gain can be achieved in each cell when a sufficiently large number of users exist. Numerical evaluation confirms that in a practical setting of the multi-cell network, the proposed DOUS outperforms the existing distributed user scheduling algorithms in terms of sum-rate.

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.87-101
    • /
    • 2013
  • In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.